

RETINA Simulation 1

User Manual

June. 2017

Table of Contents

1- STARTING W	ITH RETINA SIMULATION 113
1-1- CRE/	ATE A NEW RETINA PROJECT
1-2- Ope	N RESULTS
1-3- Ope	N A SAVED PROJECT
1-4- Ope	N ECLIPSE DATA FILE
2- MAIN COMP	ONENTS OF THE RETINA VIEW
2-1- Pro	gram Standard Toolbar
2-1-1-	File
2-1-2-	Project Setting23
2-1-3-	Validation24
2-1-4-	Simulation24
2-1-5-	Tools
2-1-6-	Options24
2-1-7-	Help24
2-1-8-	Perspectives24
2-2- 3D \	View Toolbar
2-3- Dat.	A TOOLBAR
2-3-1-	Geometry & Grid Data27
2-3-2-	Reservoir Data27
2-3-3-	Scheduling Data
2-3-4-	Numerical & Results Data28
2-4- Left	PANEL
2-4-1-	Model Tree28
2-4-2-	3D Properties
2-4-3-	Well Path50
3- HOW TO USE	DATA TOOLBAR60
3-1- Usin	NG GEOMETRY & GRID DATA TAB
3-1-1-	Define Grid Data60
3-1-2-	Grid Data Tab60
3-1-3-	Grid Importer69
3-1-4-	Grid Property70
3-1-5-	Fault Manager86

(ESTD		
3-1-6-	Dual Option	88
3-1-7-	Face Manager	89
3-1-8-	Script Calculator	91
3-2- Usin	NG RESERVOIR DATA TAB	103
3-2-1-	PVT Region Data	
3-2-2-	Rock Region Data	
3-2-3-	Saturation Region Data	125
3-2-4-	Equilibration Region Data	141
3-2-5-	End Point Scaling Region Data	145
3-2-6-	Aquifer Data	149
3-3- Usin	NG SCHEDULING DATA TAB	156
3-3-1-	Date Manager	156
3-3-2-	Well Manager	159
3-3-3-	Well Group Manager	
3-3-4-	Group Recurrent Manager	
3-3-5-	VFP Manager	
3-3-6-	Well Recurrent Manager	207
3-3-7-	Reservoir Recurrent Manager	
3-3-8-	Drilling Management	212
3-3-9-	Rig Management	215
3-4- Usin	NG NUMERICAL DATA TAB	216
3-4-1-	Numerical Parameters	216
3-4-2-	Output Data	217
4- HOW TO USE	E 3D TOOLBAR	221
4-1- MTI	RX, FRAC, DUAL	
4-2- DISP	PLAYING OPTIONS	
4-3- 3D	VIEW SETTING AND SAVE	
4-3-1-	Background Settings	
4-3-2-	Axes Box Settings	
4-3-3-	Mesh Shape Settings	
4-3-4-	Well Settings	
4-3-5-	Aquifer Settings	
4-3-6-	Antialiasing Settings	
4-3-7-	Rendering Settings	

	234
4-3-9- Polygon Mode Settings	234
4-3-10- Lighting Settings	234
4-3-11- Property Settings	235
4-3-12- Animation and Info Text Settings	
4-4- Mouse Buttons Action and Keyboard Shortcuts	
4-4-1- Rotation	
4-4-2- Movement	
4-4-3- Zooming in and out	237
4-5- Keyboard Shortcuts	
5- PROGRAM STANDARD TOOLBAR	239
5- PROGRAM STANDARD TOOLBAR	239
 5- PROGRAM STANDARD TOOLBAR 5-1- FILE 5-2- PROJECT SETTING 	239 239 239
 5- PROGRAM STANDARD TOOLBAR 5-1- FILE 5-2- PROJECT SETTING 5-3- VALIDATION 	239 239 239 239 241
 5- PROGRAM STANDARD TOOLBAR 5-1- FILE 5-2- PROJECT SETTING 5-3- VALIDATION 5-4- SIMULATION 	239 239 239 241 241 242
 5- PROGRAM STANDARD TOOLBAR 5-1- FILE 5-2- PROJECT SETTING 5-3- VALIDATION 5-4- SIMULATION 5-5- TOOLS (RESULT VIEWER) 	239 239 239 241 242 242 246
 5- PROGRAM STANDARD TOOLBAR 5-1- FILE 5-2- PROJECT SETTING 5-3- VALIDATION 5-4- SIMULATION 5-5- TOOLS (RESULT VIEWER) 5-5-1- How to Use Result Viewer 	239 239 239 241 242 242 246 252
 5- PROGRAM STANDARD TOOLBAR 5-1- FILE 5-2- PROJECT SETTING 5-3- VALIDATION 5-4- SIMULATION 5-5- TOOLS (RESULT VIEWER) 5-5-1- How to Use Result Viewer 5-6- OPTIONS 	239 239 239 241 242 242 246 252 254

List of Tables

Table 1 Event and Completion Names 54

List of Figures

Figure 1 – Starting Window of the RETINA Simulation 1	13
Figure 2 – Start Page File Tab	14
Figure 3 - Start Page Tools Tab	15
Figure 4 - Create a New Project	15
Figure 5 - Plot Result Viewer Window	17
Figure 6 - Unit System	17
Figure 7 - Project Path Window	18
Figure 8 - Open an Eclipse Data File Window	19
Figure 9- Message List Window	20
Figure 10 - Filtering of the Messages for warnings	21
Figure 11 – RETINA Simulation 1 View	22
Figure 12 - Program Standard Toolbar	23
Figure 13 – 3D View Toolbar	25
Figure 14 – Data Toolbar	27
Figure 15- a) Model Tree All Validation Messages of the Sample Project, b) Model Tr	ree
Selected Node Validation Messages of the Sample Project	30
Figure 16- Y-Direction Horizontal Permeability Map of the Sample Model	32
Figure 17- Porosity Map of the Sample Model	32
Figure 18- Adjusted Porosity Map of the Sample Model	34
Figure 19- Loaded Grid Results for Oil Saturation Variable (Initial State)	34
Figure 20- Loaded Grid Results for Oil Saturation Variable (After four years)	35
Figure 21- IJK-Slice in X-direction	36
Figure 22 Adding Block Box Filter	36
Figure 23 Adding Block Box Filter Index of 2 to 10 in the "I" Direction	37
Figure 24 Applied Block Box Filter Index of 2 to 10 in the "I" Direction on 3D View	38
Figure 25 Adding Block Box Filter for I-index of 2 to 10 and J-index of 3 to 25	38
Figure 26 Applied Block Box Filter for I-index of 2 to 10 and J-index of 3 to 25 on 3D Vie	39
Figure 27 Adding Block Box Filters with AND Operator	39
Figure 28 Applied Block Box Filters with AND Operator on 3D View	40
Figure 29 Applied Inver Block Box Filter	40
Figure 30 Adding Block Geometry Filter	41
Figure 31 Adding Block Geometry Filter from 0 to 5000m in "X" Direction	41
Figure 32 Applied Block Geometry Filter from 0 to 5000m in "X" Direction on 3D View .	42

Figure 33 Adding Block Geometry Filter from 0 to 5000m in "X" Direction and from 3000
to 10000m in "Y" Direction
Figure 34 Applied Block Geometry Filter from 0 to 5000m in "X" Direction and from 3000
to 10000m in "Y" Direction on 3D View 43
Figure 35 Adding Block Geometry Filters with AND Operator
Figure 36 Applied Block Geometry Filters with AND Operator on 3D View 44
Figure 37 Applied Inver Block Geometry Filter 45
Figure 38 Creating Polygon Filter 46
Figure 39 Adding Block Property Filter 46
Figure 40 Adding Block Property Filter on X-Permeability47
Figure 41 Applied Permeability Filter on 3D View47
Figure 42 Adding Logical Filter
Figure 43 Adding Logical Filter with "OR" Operation 49
Figure 44 Using "NOT" Logical Operation 49
Figure 45- Enhanced Probe Tab 50
Figure 46 Well Path Importing Facility51
Figure 47 Import Well Path Dialog53
Figure 48 Visualizing the Imported Well Paths53
Figure 49 Import Well Event Dialog 55
Figure 50 Visualizing the Imported Well Events
Figure 51 Import Observed Data Dialog57
Figure 52 Export Well Path Keywords Dialog58
Figure 53 Intersecting Model Grids and Imported Well Path58
Figure 54 Exported Well Path Keywords 59
Figure 55 Well Tack Spread Sheet 59
Figure 56- Define Grid Data 60
Figure 57- Center Point Grid Data Window61
Figure 58 - Define Dip61
Figure 59- a) A model without Dip, b) Dip in X direction with 0.5 m shift in Z direction 62
Figure 60- Local Coordinate System 62
Figure 61- Copy and Multiply Window63
Figure 62- Edit Center Point Grid Data Window63
Figure 63-Define Region Using Structured Box Option64
Figure 64- Define Region Using List of Node Indices64
Figure 65- Define Region Using Range of Indices65

Figure 66- Set Grid Data By Layer	65
Figure 67- String Conversion Option	66
Figure 68- ZCORN COORD Geometry Type	66
Figure 69- Coordinate Line Window	67
Figure 70 - Corner Point Zs Window	67
Figure 71- Corner Point Geometry Type	68
Figure 72- "I-Raw data" for "J Index" and "K Index" of 2 and 1, respectively	69
Figure 73 Import Grid Data Dialog	70
Figure 74- Grid Properties Window	70
Figure 75- Add Properties Window	85
Figure 76- Import Grid Properties Window	86
Figure 77 Create Custom Property Dialog	86
Figure 78- Define Fault	87
Figure 79- Fault Properties	87
Figure 80- Dual Options	89
Figure 81 Face Manager Dialog	90
Figure 82 Editing Visibility of Columns in Face Manger	90
Figure 83 Find and Filter Action on Face Manager	91
Figure 84- Face Calculator Dialog	92
Figure 85 Property Calculator Dialog	93
Figure 86 Grid Filters section of Script Calculator	95
Figure 87 3D View Filters in Script Calculator	96
Figure 88 Loading Grid Results	97
Figure 89 Loaded Grid Results in Script Calculator	98
Figure 90 PVT Region Data Dialog	103
Figure 91- PVT Data Management Dialog after Adding PVT Region Data	104
Figure 92- PVT Data Types	105
Figure 93 A Typical PVTO Table and Curves	106
Figure 94 A Typical PVDG Table and Curve	107
Figure 95 A Typical Water PVT Data	108
Figure 96 A Typical PVZG Table and Curve	110
Figure 97 A Typical PVTG Table and Curves	112
Figure 98 A Typical PVDO Table and Curves	118
Figure 99 Plots Setting	120
Figure 100- Rock Region Data Management	121

Figure 101 Rock Compaction Data Table and Plot12	23
Figure 102 Rock Overburden Pressure Table and Plot	24
Figure 103 Rock Compaction Data in Dual Porosity Table and Plot	25
Figure 104- Saturation Data Management	26
Figure 105 SOF3 Saturation Table and Plots12	27
Figure 106 SWFN Saturation table and Plots12	28
Figure 107 SGFN Saturation Table and Plots12	29
Figure 108 SWOF Saturation Table and Plots	31
Figure 109 SGOF Saturation table and Plots13	32
Figure 110 SLGOF Saturation Table and Plots13	34
Figure 111 SOF2 Saturation Table and Plot13	36
Figure 112 J-Function Corresponding Parameters Tab14	40
Figure 113- Hysteresis Tab14	40
Figure 114- Equilibration Data Management14	42
Figure 115- Typical Rs vs. Depth14	43
Figure 116 Typical Rv Vs. Depth 14	43
Figure 117- Typical API vs. Depth	44
Figure 118- Typical Threshold Pressure Tab14	44
Figure 119- Define an End Point Scaling Type14	45
Figure 120- End Point Scaling Data Management14	46
Figure 121- Aquifer Data15	50
Figure 122- Fetkovich Aquifer Definition15	51
Figure 123- Aquifer Tables15	52
Figure 124- Fetkovich Aquifer Recurrent Parameters15	52
Figure 125- Aquifer Connections15	53
Figure 126- Carter-Tracy Aquifer15	54
Figure 127- Numerical Aquifer Definition15	55
Figure 128- Date Manager15	56
Figure 129- Select Date, Using Calendar15	57
Figure 130- Warning Message of Remove Date	57
Figure 131- Removing Dates Including Keywords	58
Figure 132- Well Manager Window	59
Figure 133- Add Multiple Wells16	60
Figure 134 WELSPECS Data	63
Figure 135 WGRUPCON Data	64

Figure 136 WCONHIST Data	166
Figure 137 WHISTCTL Data	167
Figure 138 WCONINJH Data	168
Figure 139 WELOPEN DATA	169
Figure 140 WECON Data	172
Figure 141 WTEST Data	174
Figure 142 WVFPDP Data	175
Figure 143 WCUTBACK Data	177
Figure 144 WCONPROD Data	179
Figure 145 WCONINJE Data	181
Figure 146 WELTARG Data	182
Figure 147 WELPI Data	183
Figure 148 WEFAC Data	184
Figure 149 WWPAVE Data	186
Figure 150 WPAVEDEP Data	186
Figure 151 Completion Data	188
Figure 152 WPIMULT Data	190
Figure 153 COMPORD Data	191
Figure 154- Adding Well Recurrents	191
Figure 155- Well Group Manager	192
Figure 156- Define Group	193
Figure 157- Well Assignment to Groups	193
Figure 158- Group Recurrent Manager	194
Figure 159- Group Constraints	195
Figure 160 GCONINJE Data	198
Figure 161 GCONPROD Data	202
Figure 162 GECON Data	203
Figure 163 GCUTBACK Data	204
Figure 164- VFP Manager	205
Figure 165- Define VFP Tables for Injection well	206
Figure 166- Injection Well VFP Table	206
Figure 167- Production Well VFP Table	207
Figure 168- Well Recurrent Manager	208
Figure 169- Displaying Options of Well Recurrents	208
Figure 170- Reservoir Recurrent Manager	209

Figure 171- Data of DRSDT	
Figure 172- Data of MULTFLT	
Figure 173- Data of TUNING	
Figure 174- Data of MULTREGT	
Figure 175- Drilling Management	
Figure 176- Moving well to Drilling Queue	
Figure 177-Drilling Rig Assignment	
Figure 178- Workover Rig Assignment	
Figure 179- Numerical Parameters window	
Figure 180- Output Data Window	
Figure 181- Summary Variables Tab	
Figure 182- Output Frequency Tab	
Figure 183- Specify Plot Count, Output Data Manager	
Figure 184- MATRIX, FRACTURE, and DUAL view	
Figure 185- DUAL view fora Sample Model	
Figure 186- Synchronized Dual View	
Figure 187- Render Options	
Figure 188- A) Render Pint, B) Render Wireframe, C) Render Solid	
Figure 189- A) Perspective, B) Orthographic	
Figure 190- View Modes	
Figure 191- A) Show wells and Hide Inactive Cells, B) Hide Wells and Show Ina	active Cells
Figure 192- 3D View Setting	
Figure 193- Background Colors	
Figure 194- Background Color	
Figure 195- Axes Box Settings	
Figure 196- Well Settings	
Figure 197- Well Visual Settings	
Figure 198- Aquifer Settings	
Figure 199- Rendering Settings	
Figure 200- A) Original Scale, B) Scaled to (3, 2, 10)	
Figure 201- Perspective Parameters	
Figure 202- Orthographic Parameters	234
Figure 203-Lightning Settings	
Figure 204- Legend View	236

Figure 205- Menu Shortcuts	237
Figure 206- General Shortcuts	238
Figure 207- Project Information	. 240
Figure 208 - Local Coordinate System	. 241
Figure 209- Simulation Window	243
Figure 210-Simulating the Sample Model	. 244
Figure 211- Live Results	. 245
Figure 212- Simulation Configuration	. 245
Figure 213- Result Viewer	.246
Figure 214 Result Viewer in Case of Imported RETINA Result File	.248
Figure 215 Import RSM File	.249
Figure 216 Comparison Window	250
Figure 217 Defining Multiple Charts in a Sheet	. 252
Figure 218 Result Viewer for One Case and One Chart	. 253
Figure 219 Result Viewer for Multi Cases and Multi Charts	. 254
Figure 220- IO Options	. 255
Figure 221-Validation Options	255
Figure 222- Property Template Manager Info Tab	256
Figure 223 Property Template Manager Colors Tab	257

1- Starting with RETINA Simulation 1

The startup window of the RETINA Simulation 1 (Figure 1) is displayed after running it.

Figure 1 – Starting Window of the RETINA Simulation 1

In addition to a brief introduction about RETINA Simulation 1, certificates, contact support information and tutorials are available here. User can use one of the following options to start working with RETINA:

- Creating a New RETINA Project
- - Opening Results
 - Loading a Saved Project of the RETINA
 - Opening an Eclipse (E100) Data File
 - Simulating a Queue of Files

For accessing certificates of Engineering Support & Technology Development Co. (ESTD) information, links are available in "RETINA Simulation 1" and "Contact Support" sections, respectively.

Recently used projects, and opened Eclipse data files as a history list, are displayed in this page, also. User can remove history list either manually using "delete" option or remove all of them by "clear all" button. Clicking on each project or data files in recent items, will open the selected one. User can access to the file directory, by right clicking on each data file in history list.

Note: No need to open a model or project in case of using "Open Results", i.e. user can open any result without loading a model.

Warning: The RETINA will be close after 10 min if the status of lock is not "OK". The 5 definitions of DEFCON_5 to DEFCON_1 exist for lock status, if you don't have proper lock the status will come down from DEFCON_5 to DEFCON_1; afterward, the program will be closed.

The options of *open project, new project, open Eclipse project,* and *Exit* options are also available in the "File" tab (Figure 2). As displayed in Figure 3 the "Tools" tab includes the *open results* option. Keyboard shortcuts for each button are also displayed, for example the shortcut of "Ctrl+E" will lead user to open an Eclipse data file.

Figure 2 – Start Page File Tab

RETINA Simulation™ 1 : test File Tools		
Result Viewer Ctrl+T		
Start Here	RETINA Simulation™ 1	Recent Data Files <u>clear all</u>
New RETINA Project Result Viewer	Founded in 2012, Engineering Support & Technology Development (ESTD) works on development of a 3D dynamic Black Oil simulator program for fractured carbonate reservoirs named "RETINA Simulation™ 1" certified by subsidiaries of National Iranian Oil Company (NIOC) including: - National Iranian South Oilfields Company (NISOC) - Iranian Offshore Oil Company (IOOC) - Iranian Central Oil Fields Company (ICOFC) - Petroleum Engineering and Development Company (PEDEC)	en Open ECLIPSE Data File test.DATA delete
test.DATA.retina delete	Tutorials	
	PDF PDF MP4	Contact Support
	User Technical 4D live Manual Brief simulation	Tei: +9821 8888 4437 Fax: +9821 8878 8649 Ste: <u>www.estdco.com</u> Email: info@estdco.com
Action: "Close Project" executed successfully		Lock State: OK

Figure 3 - Start Page Tools Tab

1-1- Create a New RETINA Project

Clicking \pm , the window of the Figure 4 which includes Project Name, Reservoir Name, Engineer Name, Supervisor Name, Validator Engineer Name, Start Date, Grid Type, and System Phase fields is displayed. User can either fill these fields or leaves them defaulted. "Grid Type" must be set to one of the "Single" or "Dual" cases. The single grid type describes a model with no fracture and the dual grid type is applied for the fractured models. User can select the system phase of the model, using the "system Phase" combo box. This combo box includes following five

💐 New Project	
New Project	+
Project Name:	Name
Reservoir Name:	Default Reservoir
Engineer Name:	Default Engineer
Supervisor Name:	Default Supervisor
Validator Engineer Name:	Default Validator
Start Date:	Wednesday, June 11, 1986 🔲 🖛
Grid Type:	Single 👻
System Phase:	Oil, Water, Gas and Dissolved Gas 👻
	Cancel

Figure 4 - Create a New Project

types of petroleum reservoir fluids: oil, gas, water, dissolved gas, and vaporized oil.

1-2- Open Results

User will be able to open multiple results of either RETINA or Eclipse for viewing or comparing, using the button of \square ; afterward, the window of plot result viewer which has been displayed in Figure 5 is opened. User can import multiple cases, and select multiple vectors and objects. Also user can define multiple result sheets and select the numbers of chart in each sheet.

Before loading the result files, the "Table" and "Comparison" buttons are inactivated. User can import result files using + \neg button or remove them by -; imported results can be renamed by clicking on them. There are three choices for importing result files in RETINA plot result viewer window:

- Import RETINA Result File (with an extension of *.rri)
- Import Eclipse Summary File (Eclipse unified or multiple binary result files with extension of *.SMSPEC)
- Import Eclipse RSM File (with an extension of *.RSM)

Nesult Viewer		- - ×
Vector Results:	+ 🖸 🗄 🗇 📾 🖽 🖫	Settings:
		ダー 福 山
		Select a chart first to show setting
a Ratios		data
Performance		
Rates		
Cumulatives		
Pressures		
U Volumes		
Properties		
Groups		
Aquifers		
Regions		
Wells		
B Blocks		
Well Completions		
Aquifer Types		
Cases:		Sheets:
_ + 🖸 🗅 🏈 🐾		- = - ₩ -
Field • 0.00	Load	Save Close

Figure 5 - Plot Result Viewer Window

User can also choose or change unit system or precision of data, using Figure 6 dropdown list and ^{0.00} option, in all windows of the RETINA. RETINA Result Viewer dialog will be described extensively, in Section 5.

Figure 6 - Unit System

1-3- Open a Saved Project

Clicking on the \Box button, user can load a RETINA saved project, using Figure 6 window. After selecting the path of the project, and a file with format of *.retina, the project is going to open.

(Choose a .retina file to be opene	ed				×
Correction of the second s			▼ 4 ₇	Search TEST	٩
Organize 🔻 New folder					- 🔳 🔞
🖉 🚖 Favorites	<u>^</u>	Name		Date modified	Туре
🧮 Desktop		퉬 TESTCASE.retina.arrays		8/11/2016 10:51 AM	File folder
퉲 Public		TESTCASE.retina		8/11/2016 10:51 AM	RETINA File
 Ibraries Documents Music 	E	< III			•
File name:	TESTCA	SE.retina	•	*.retina Open 🔽	▼ Cancel

Figure 7 - Project Path Window

1-4- Open Eclipse Data File

The "Import Eclipse" window of Figure 8 is opened, using button. It should be noted that, RETINA can open the Eclipse data files with *.DATA format.

In the "File Path" section the recently opened data file paths are shown. In this section the most recent item is displayed in the first row of file path table. For clearing all recent paths, you can use the "Clear History". User can select 3D check-box for having three dimensional view of the reservoir model.

Import Eclipse	
Import Eclipse	ECL
Recently opened Eclipse data files:	
File Path D:\ESTD\Projects\RETINA Simulation\Tasks\Cases\test\testWTEST.DATA D:\ESTD\Projects\RETINA Simulation\Tasks\Cases\test\test.DATA	
Path: D:\ESTD\Projects\RETINA Simulation\Tasks\Cases\test\testWTEST.DA View 3D Image: Comparison of the second	ATA
Clear History Cancel	ОК

Figure 8 - Open an Eclipse Data File Window

Clicking the "OK" button and closing the window, "Message List" window is displayed. User can see three levels for the messages of window. The first level which is indicated by \bigotimes , is Error messages. The second and third levels of the messages are indicated by \triangle (warning messages) and () (information messages), respectively (Figure 9).

2	💐 Errors, Warnings and Information					
6	60 Messages; Errors:(5), Warnings:(1), Infos:(54)					
С (Data	file was successfully opened with the following messages. Please review these messages as they can effect the results of simulation.				
1	15	Keyword Ignored: NSTACK	-			
	16	😵 Unhandled Keyword: INRAD				
1	17	😵 Unhandled Keyword: DRV				
1	18	Keyword Read: EQUALS	Ξ			
1	19	Keyword Read: COPY				
	20	Keyword Read: MULTIPLY				
	21	🛕 Error in Keyword: DRV				
	22	Keyword Read: SWFN				
	23	Keyword Read: SGFN				
	24	Kevword Read: SOF3	-			
	>	Unhandled Keyword: INRAD This keyword has not been handled in RETINA Simulation™. The data associated to this keyword has been ignored. This can affect the results of your simulation.	4 •			
	Fiel	Id				

Figure 9- Message List Window

- Error messages are displayed when there are one or more keywords in the data file, which RETINA does not cover them. Simulating the data file without these keywords is impossible. User must resolve the displayed Errors by removing or modifying them. Note that for each keyword, the separate message is displayed where user can select each message to see its details.
- ▲ Warning messages are displayed when there are one or more keywords in the data file, which RETINA does not cover them, but simulating the data file without these keywords is possible. It should be noted that ignoring these types of keywords can affect the running behavior and results of the simulation. If user wants to have same results as Eclipse, these keywords must be removed from data file. Same as Error messages, the separate message is displayed for each keyword, where user can select each message to see its details.
- The information messages are displayed when keywords of the data file are covered by the RETINA. The information messages are categorized in two types: a) messages which are displayed for successful reading, and b) messages for ignoring some keywords which have not effect on results of the simulation. Same as Error and

warning messages, the separate message is displayed for each keyword, where user can select each message to see its details.

User can also filter the displayed messages for displaying just desired messages level (Figure 10).

Reference Control Cont	
60 Messages; Errors:(5), Warnings:(1), Infos:(54)	×
Data file was successfully opened with the following messages. Please review these messages as the	ey can effect the results of simulation.
1 A Error in Keyword: DRV	
Error in Keyword: DRV	
Exception while Transferring Keyword: DRV Not implemented Yet!	*
	₹
Field	Close

Figure 10 - Filtering of the Messages for warnings

2- Main Components of the RETINA View

The main view of the RETINA after loading or creating a project will be similar to Figure 11, which consists of the following components:

- Program Standard Toolbar
- 3D View Toolbar
- Data Toolbar
- Left Panel

Figure 11 – RETINA Simulation 1 View

2-1- Program Standard Toolbar

Program standard toolbar has been placed in top of the main view and consist of File, Project Setting, Validation, Simulation, Tools, Options, and Help buttons. There are also Facilities for opening and creating project, closing, saving, left panel show/hide, perspectives, and result viewer options.

RETI	RETINA Simulation™ 1 : PSAMPLE						
File F	File Project Setting Validation Simulation Tools Options Help						
+		a 💥 🛗 🛱 💾 🎴 Preproces	s Perspective Simulation Perspective	▶∐∠			
B		Model Tree 3D Properties Well Path	M • 🚫 📽 🗍 • 🚺 • :				
d Dat		 I I I I I	Matrix (Active)				
y & Gri		Properties ACTNUM					
Geometry		EQLNUM PERMX PERMX					
voir Data		PERMZ E PORO PORV					
ata Reser		PVTNUM ROCKNUM SATNUM					
reduling D		Grid Results (Loaded)					
s Scl		63 HM M II > H MH 63					
Result		Step: 1, Date: 2005/02/01					
ata &		Start					
rical D		Step: 1					
Nume	+ × = -	Time: 0.0 day					
View 3d	d was cha	anged to normal mode		Lock State: OK	Metric (ECLIPSE™) 👻 🕐		

Figure 12 - Program Standard Toolbar

2-1-1- File

+)

- Create a New Project
- Open a RETINA Saved Project
- Open an Eclipse Data File
- 💥 🛛 Close Project
- Save Current Project
 - Save Project as a New One
- () Exit

2-1-2- Project Setting

i N

- Project Information
- Open Eclipse Import Messages

2-1-3- Validation

- Full Project Validation
- Grid Validation
- **Function Validation**
 - Initialization Validation
 - **End-Point Scaling Validation**
 - **Aquifers Validation**
 - Scheduling Validation
 - Numerical Validation
 - **Output Validation**

2-1-4- Simulation

Start Simulation

Open Plot Results Viewer

Input/output Path

Simulation Configuration

2-1-6- Options

- Validation
- Property Template (i)

2-1-7- Help

- ? Help Document
 - **Technical Document**
- \diamond **Keyboard Shortcuts**

2-1-8- Perspectives

Preprocess Perspective

Simulation Perspective

2-2- 3D View Toolbar

3D view toolbar has been placed below the program standard toolbar, which is shown in Figure 13.

Figure 13 – 3D View Toolbar

Each buttons is introduced here:

м	Dual Vie	ew Option:
	м	Show Matrix View
	F	Show Fracture View
	MF	Show Both Matrix and Fracture View
ŝ	Sync Fra	acture and Matrix views
	ŝ	Un -Sync
	S	Sync
٢	Reset V	iew
\square	Render	Actions consist of:
•		

Render Wireframe

Render Solid

Camera Mode Option: \square

 \square

- Perspective
 - Orthographic

X Camera Direction Actions consist of:

- $\stackrel{x}{\leftarrow}$ Camera direction on negative X-coordinate
- Camera direction on positive X-coordinate
- $X \rightarrow Y \downarrow Y \uparrow$ Camera direction on negative Y-coordinate
- Camera direction on positive Y-coordinate
- z↓ Camera direction on negative Z-coordinate
- Z↑ Camera direction on positive Z-coordinate
- Z Scale Actions which is used for scaling the z-axis of a model in 3D view
 - **3D View Setting**

Z

R

30

- Save 3D View as .png File
- Show or hide inactive cells
- ∇ **Create Polygons**
- ٩ Show or hide model grids
- <u>ک</u> Show or hide model wells
- Show or hide aquifers ****

Data Toolbar 2-3-

The Data Toolbar consist of following 4 main tabs, which will describe in this section:

- Geometry & Grid Data •
- Reservoir Data
- Scheduling Data
- Numerical Data & Results

2-3-1- Geometry & Grid Data

Geometry & Grid data tab is used for defining geometry and grid properties, which includes following buttons:

- âП Initializing Grids (is used just for new projects)
- Grid file Importer
- $\left(\right)$ Grid data (like DX, DY, DZ, COORD and etc.)
- Grid Property (like porosity, permeability and etc.)
- Fault Manager
- Dual (fractured models) Options
- 1 Face Manager
- + × Script Calculator

2-3-2- Reservoir Data

Reservoir data tab is used for defining reservoir data like rock and fluid properties, Aquifers, Regions, SCAL data and etc. This tab includes following 6 buttons:

PVT Region Data **Rock Region Data**

- Saturation Region Data
- 6 P Equilibration Region Data
- •//• End Point Scaling Region Data
- *** Aquifer Data

Figure 14 – Data Toolbar

2-3-3- Scheduling Data

Well, group, drilling, rig and VFP definition and scheduling data are available in scheduling data tab using following buttons:

Vertical Flow Performance Manger

- Well Recurrent Manager
- Reservoir Recurrent Manager
- Drilling Manager
- Rig Manager

2-3-4- Numerical & Results Data

It includes two following buttons which are used for output selection before run, and some numerical parameters for the simulation like time steps, solver type and etc.

- **Edit Numerical Parameters**
- - Manage Output Data

2-4- Left Panel

This panel has three main tabs of "Model tree", "3D Properties", and "Well Path".

2-4-1- Model Tree

Initially, model tree includes a node of "Project" which is parent of the following nodes:

- Grid
- Functions
- Initialization
- EPS (End Point Scaling)
- Aquifer
- Scheduling
- Numerical

• Output Data

The "Grid" node has two child nodes of "Geometry" and "Properties". The geometry node includes information about the geometry of the model (like ZCORD, COORD, DX, DY and etc.). The properties of model like permeability and porosity maps, Region Nums (like PVTNUM, SATNUM and etc.) and other grid properties which can be entered using "Grid Properties View". Double clicking on each node of "geometry" or "properties" will lead user to related window.

The "Function" node includes "PVT", "Rock", and "Saturation" (SCAL) properties of the model which are available in "Reservoir Data" tab. User can open each node to see the defined reservoir functions. Double clicking on each node of the "PVT", "Rock" or "Saturation" will lead user to the related window.

The equilibration data are displayed as child of the "Initialization" node. User can double click on the "Initialization" node to open the "Equilibration Data Management" window.

The end point scaling data are displayed as child of the "EPS" node. Like other nodes, user can double click on the "EPS" node to open the "End Point Scaling Data Management" window.

The "Aquifer" node includes defined aquifer data of the model which are available in "Aquifers Data" window; user can open this window by double clicking on the "Aquifer" node.

The "Scheduling" node includes "Wells", "Groups", "VFPs", "Rigs", and "Drilling Queues" nodes, which are available in "Scheduling Data" tab. User can open each node to see the defined reservoir functions. Double clicking on each node of the "Wells", "Groups", "VFPs", "Rigs" or "Drilling Queues" will lead user to the related window.

Double clicking the "Numerical" or "Output Data" nodes will lead user to related window in "Numerical Data & Result" tab.

If user validate project using "Validation" button of the program standard toolbar, the state of each node changes to error (\bigotimes) or warning (\triangle) in case of validation issues, otherwise it remains in validated state (\bigotimes). The validation full text messages for each node are available in "Validation Messages" tab below the "Model tree" tab (Figure 15a). If user wants to see all validation messages of current project, he/she will select "Project"

node from the model tree tab. In some cases user just wants to see a special node validation messages, in such cases he/she can click on the desired node (Figure 15b).

There is also a message filtering facility in "Validation Messages" tab.

Figure 15- a) Model Tree All Validation Messages of the Sample Project, b) Model Tree Selected Node Validation Messages of the Sample Project

There is a "Statics" tab in addition to the validation messages tab for Model Tree. This tab displays specific description for each node. The "Project" node includes project name, validator, supervisor and engineer names, and finally project (simulation) start date. The "Grid" node includes type of grid geometry i.e. center-point, corner-point, or ZCORN

COORD, number of total, active, and inactive cells, minimum and maximum values for x,y,z, and the dimension of data file i.e. Nx, Ny, Nz; The "Function" node statistics tab displays the number of defined regions such as PVT, Rock and saturation; the type of the initialization is displayed in "Initialization" node statistics tab. number of End point scaling tables and type of end point scaling is displayed in "EPS" node statistics tab. the "Aquifer" node includes the number of aquifers, type of defined aquifers and number of aquifer tables. The number of groups, wells, VFP tables, and other scheduling data is listed in the "Scheduling" statistics tab. Solver options and Modeling options are displayed in "Numerical" node, and finally, the output data counts are displayed briefly in the statistics tab of the "Output Data" node. All of the aforementioned nodes have some child and each child has own statistics information in detail.

2-4-2- 3D Properties

In addition to legend options and grid results import facility, the 3D properties tab includes following nodes (Figure 16):

- Properties
- Grid Results (Loaded)
- Grid Results (Live)

Three tabs of "Time Player", "Grid Filters", and "Enhanced Probe" exist in lower section of the left panel for 3D properties tab.

The "Properties" node includes all grid properties which have been previously defined in "Geometry and Grid Data" tab. User can see the desired property map by clicking on it. For example Figure 16 shows the horizontal permeability of the sample reservoir in "Y" direction and Figure 17 shows the porosity map of the sample model.

Initially the legend data range of all properties which are displayed in 3D view is set to predefined template. User can adjust the legend data range to the displayed 3D property using (1). For example, if this action is performed on Figure 17, the porosity map will be like Figure 18. The predefined template range of porosity is [0 - 0.3] (Figure 17), but after adjusting the legend the maximum and minimum values of the sample model is applied and figure 18 is displayed.

File Project Setting Validation Simulation Tools Options	Help		
🕞 🗋 🔤 💥 🛗 🞇 🕒 Preproce	ss Perspective 💽 Simulation Perspective 🌔		
Model Tree 3D Properties Well Path	M • 🖉 🐨 🗊 • 🗍 • 🗶	• zî • 🎕 🐘 🖽 🖓 🚺	
	Matrix (Active)		
			PERMX
EQLNUM			mDarcy
	Y_AVIS -1121.9	1453.3	100Q.0 7
PERMY DEPM7	2413.0	5113.4	
	5947.9		, 8773.5
PORV	9482.8	200	433.5
PVTNUM		P04 P03	
ROCKNUM			
SATNUM			
Grid Results (Loaded)			1.0
Time Player Grid Filters Enhanced Probe			
			·
5 tan: 1. Date: 2005/02/01			\rightarrow
Step: 1, Date: 2003/02/01	- Z		
Figure Start End			<u></u>
		<	
₩ F Step: 1			
Time: 0.0 ay			·····
	124333.5 _		7
			Metric (ECLIDSE™) = ③
view 50 was changed to property mode			meme (ceurse) + U

Figure 16- Y-Direction Horizontal Permeability Map of the Sample Model

For resetting the legend configuration to its default, the button of ($[\circ]$) is used. The displayed property value can be either continuous or discrete according to selected property; for example porosity is a continuous property whereas PVTNUM is a discrete one. User can change the displaying mode to discrete or continuous status using ([]).

"Import Grid Results" button ([●]) is used for importing *.rri RETINA file format which is available during and after simulation in the project path in result folder. A list of grid properties is displayed in "Grid Results (Loaded)" node after importing result file. The property also is displayed in 3D view section (Figure 19). If imported file does not include any grid result, an information message is displayed.

Note: Grid results are generated only in case of selecting desired variables in "3D Visualization Variables" tab of "Output Data" window.

After importing result files, user can press *play* button of which is exists in "Time Player" tab to see the variation of selected variable values during time. For example Figure 20 shows the oil saturation distribution in reservoir in date of 2009/02/01. Note that the initial date of simulation is 2005/02/01 according to Figure 19. The following buttons exist in "Time Player" tab:

- 🛤 Going to the first step
- Going to the previous step
- Playback
- II Pause
- Play
- Going to the next step
- ➡ Going to the last step
- 6∂ Active live result loader (only during simulation)

User can see desired 3D variables lively during simulating using 60 button.

RETINA Simulation™ 1 : PSAMPLE RETINA SIMPLE RETIN					
File Project Setting Validation Simulation Tools Options Help					
🕞 🗋 🔤 💥 🛗 🔀 🕒 Preproces	s Perspective Simulation Perspective				
Model Tree 3D Properties Well Path	M • ∅ • 🗊 • 🗍 • 🕺	· zî • 💩 🎆 🗐 🖓 🗊			
	Matrix (Active)				
A Properties			PORO		
G PERMY PERM7	X-Axis 2413.0	1453.3	Y- 6		
	9482.8		773.5 0.2 - 		
		P04	0.45/-		
Grid Results (Loaded) Grid Results (Live)			× 0.05 -		
Time Player Grid Filters Enhanced Probe		P02			
			$/$ \sim		
Start End					
a + x Step: 1 • - Time: 0.0 • day					
	12433.5 ~				
			$<$ /_		
Contour values were adjusted with current property values					

Figure 18- Adjusted Porosity Map of the Sample Model

"Grid Filter" tab is used to filtering grid 3D view to display desired section or layer of the model. This tab includes two separated sections of "IJK-Slice Player" and "Filters". The IJK-Slice Player section not only is used for displaying defaulted Slices in 3 main directions of I, J, and K but also is used for defining custom IJK slice. For example Figure 21 displays the 20th layer of the sample model in X direction.

The following buttons exist in "IJK-Slice Player" section of "Grid Filter" tab:

- 🛤 Going to the first layer
- Going to the previous layer
- Playback layers
- II Pause
- Play layers
- Going to the next layer
- ₩ Going to the last step

Figure 20- Loaded Grid Results for Oil Saturation Variable (After four years)

Figure 21- IJK-Slice in X-direction

It is possible to define five possible filters of box, geometry, polygon, property, and logical using "Filters section. Clicking on the plus sign in the filter section allows user to define desired filters. Each filter definition is explained here:

1. Block Box Filter: the dialog of the Figure 22 is displayed if user wants to add block box filter. Initially none of the boxes are checked which means no filter is added to 3D view. The name of the "Block_Box_##" is assigned to the defined block box filter, by default; this name is editable. For adding filter on each direction, user should just check the related box and enter the minimum and maximum index in the specified direction. For example the Figure 23

💐 Box Filter	×
Box Filter	IJK
Filter Name: Block_Box_1	
Invert the whole filter	
I (nx = 34)	
Check I Invert I V From: 1 V To: 34 🕁	Reset
Use AND operator between I and J filters instead of OR	
J (ny = 50)	
Check J Invert J V From: 1 A V To: 36	Reset
Use AND operator between J and K filters instead of OR	
K (nz = 8)	
Check K Invert K 🗸 From: 1 👘 🗸 To: 8 👘	Reset
Cancel	ОК

Figure 22 Adding Block Box Filter

displays the configurations for adding a filter index of 2 to 10 in the "I" direction. Clicking on the OK button, filter will be applied on 3D view (Figure 24). Note that the editing of the defined filter is allowed by double clicking on the added one in the Filters section. If user unchecks the "From" or "To" index values the 1 and maximum index of the model in desired direction is assumed for them, respectively.

User can define filters on two or three directions, for example the Figure 25 displays the filter configuration for I-index of 2 to 10 and J-index of 3 to 25.

8 Box Filter						IJŀ
Filter Name:			Blo	ck_Box_1		1-\-
I (nx = 34)	filter					
Check I	nvert I 🛛	From: 1	Â	🔽 To: 🔟	A	Reset
J (ny = 36)	nvert J 🛛	From: 1	A V	☑ To: 36	A Y	Reset
Use AND operato	r between J	and K filters	instead of	OR		
K (nz = 8)	nvert K 🛛	From: 1	A Y	[√] To: 8	A V	Reset
				Cancel		OK

Figure 23 Adding Block Box Filter Index of 2 to 10 in the "I" Direction

In such cases the sum of both filters are added to the 3D view (Figure 26); if user checks the "AND operator" box (Figure 27) only grid cells which are exist in both filters are displayed such as Figure 28. For having invert filters the "invert" check box either for each direction or for whole filters must be checked. The Figure 29 displays the invert filter of the Figure 28 filters.

Figure 24 Applied Block Box Filter Index of 2 to 10 in the "I" Direction on 3D View

3ox Filter						IJŀ
Filter Name:		Blo	ock_Box_1		Ĩ	
I (nx = 34)	From:	1	To:	10		Reset
Use AND operator between	I and J filte	rs instead of	OR			
Check J Invert J	From:	3	To:	25	×	Reset
Use AND operator between K (nz = 8)	J and K filt	ers instead o	fOR			
Check K Invert K	☑ From:	1 (*	[] To: [8	A V	Reset
			Car	rel	_	OK

Figure 25 Adding Block Box Filter for I-index of 2 to 10 and J-index of 3 to 25

Figure 26 Applied Block Box Filter for I-index of 2 to 10 and J-index of 3 to 25 on 3D View

Box Filter			IJK
Filter Name:		Block_Box_1	
Check I Invert	I 🔽 From: 1	To: 10	Reset
☑ Use AND operator bet J (ny = 36)	ween I and J filters in	nstead of OR	
Check J Invert	J Veen Land K filterr i	To: 25	Reset
K (nz = 8)	ween y and K milers i	Instead of OK	
Check K 🗌 Invert	K 📝 From: 1	▲ V To: 8	Reset
		Cancel	ОК

Figure 27 Adding Block Box Filters with AND Operator

Figure 28 Applied Block Box Filters with AND Operator on 3D View

Figure 29 Applied Inver Block Box Filter

2. Block Geometry Filter: the dialog of the Figure 30 is displayed if user wants to add block geometry filter. Initially none of the boxes are checked which means no filter is added to 3D view. The name of the "Block Geometry ##" is assigned to the defined block geometry filter, by default; this name is editable. For adding filter on each direction, user should just check the related box and enter the minimum and maximum coordinates in the specified direction. For example the Figure 31 displays the configurations for adding a filter from 0 to 5000 meter in the "X" direction. Clicking on the OK button, filter will be applied on 3D view (Figure 32). Note that the editing of the defined filter is allowed by double clicking on the added one in the Filters section. If user unchecks the "From" or "To" field values the minimum and maximum coordinate of the model in desired direction is assumed for them, respectively.

User can define filters on two or three directions, for example the Figure 33 displays the filter configuration for 0 to 5000 m in "X" direction and 3000 to 10000 m in "Y" direction.

Figure 30 Adding Block Geometry Filter

थ् Geometry Filter		_ D _ X
Geometry Filter		IJK
		<u></u>
Filter Name:	Block_Geometry_1	
Invert the whole filter		
X (Min X = -1626.84 (m), Max X = 135	22.7 (m))	
🖉 Check X 📃 Invert X 🔍 From	n: 0.0 🗹 To: 5000	Reset
Use AND operator between X and Y Y (Min Y = 930.38 (m), Max Y = 16616 Check Y Invert Y V From	/ filters instead of OR i.5 (m)) n: 930.38	Reset
Use AND operator between Y and Z Z (Min Z = -2883.91 (m), Max Z = -14.	Z filters instead of OR 34.6 (m))	
Check Z Invert Z From	n: -2883.91	Reset
Metric (ECLIPSE™) ▼	Cancel	ОК

Figure 31 Adding Block Geometry Filter from 0 to 5000m in "X" Direction

In such cases the sum of both filters are added to the 3D view (Figure 34); if user checks the "AND operator" check box (Figure 35) only grid cells which are exist in both filters are displayed such as Figure 36. For having invert filters the "invert" check box either for each direction or for whole filters must be checked. The Figure 37 displays the invert filter of the Figure 36 filters. There is the unit system combo box in this dialog, in which the user can select desired unit system including Field, Metric, and SI.

Figure 32 Applied Block Geometry Filter from 0 to 5000m in "X" Direction on 3D View

seometry Fliter	<i>IJ</i>
Filter Name:	Block_Geometry_1
Invert the whole filter	
X (Min X = -1626.84 (m), Max X = 1	22.7 (m))
Check X 🔲 Invert X 🔍 Fro	: 0.0 🔽 To: 5000.0 Reset
Use AND operator between X and Y (Min Y = 930.38 (m), Max Y = 166 V Check Y Invert Y V Fro	filters instead of OR .5 (m)) : 3000 Image: Constraint of the second
Use AND operator between Y and	filters instead of OR
Z (Min Z = -2883.91 (m), Max Z = -1	34.6 (m))
Check Z Invert Z V Fro	: -2883.91 🗸 To: -1434.6 Reset

Figure 33 Adding Block Geometry Filter from 0 to 5000m in "X" Direction and from 3000 to 10000m in "Y" Direction

Figure 34 Applied Block Geometry Filter from 0 to 5000m in "X" Direction and from 3000 to 10000m in "Y" Direction on 3D View

2 Geometry Filter			_ D X
Geometry Filter			IJK
Filter Name:	Block_	Geometry_1	
Invert the whole filter X (Min X = -1626.84 (m), Max X = 1352	22.7 (m))		
🖉 Check X 📄 Invert X 📝 From	: 0.0	✓ To: 5000.0	Reset
✓ Use AND operator between X and Y Y (Min Y = 930.38 (m), Max Y = 16616	filters instead of OR .5 (m))		
Check Y 🔲 Invert Y 📝 From	: 3000.0	✓ To: 10000.0	Reset
Use AND operator between Y and Z	filters instead of OR		
Z (Min Z = -2883.91 (m), Max Z = -14:	;4.6 (m)) :	√ To: -1434.6	Reset
Metric (ECLIPSE™) ▼		Cancel	ОК

Figure 35 Adding Block Geometry Filters with AND Operator

Figure 36 Applied Block Geometry Filters with AND Operator on 3D View

Figure 37 Applied Inver Block Geometry Filter

3. Block Polygon Filter: for creating a polygon filter user must be pick the polygon icon " \checkmark " from the 3D view toolbar (Figure 38a), and draw polygons by clicking (Figure 38b). User can draw multiple polygons (Figure 38c). Double clicking in each position will close the polygon. After creating all desired polygons, user can make the polygon filter (Figure 38d) using "Add Polygon Filter" which is available in "Filter" section. The name of the "Block_Polygon_##" is assigned to the defined block polygon filter, by default; this name is editable by double clicking on the created filter. If user wants to exit polygon drawing status the "Esc" key must be used. Figure 38 displays the polygon drawing on 3D view.

Figure 38 Creating Polygon Filter

Block Property Filter: the dialog of the Figure 39 is displayed if user wants to add block property filter. Initially none of the properties are selected which means no filter is added to 3D view. The name of the "Block Property ##" is assigned to the defined block property filter, by default; this name is editable. For adding filter on each property, user must select it using "Property to Filter" combo box; if the property is schedulable user should select the desired date using "Property Date" combo box. For adding filter on each property, user should just check the related box and enter the minimum and maximum values for the property. For example the Figure 40 displays the configurations for adding a

Noperty Filter	
Property Filter	IJK
Filter Name:	Block_Property_1
Invert the whole filter	
Property to Filter:	
Property Date:	
Metric (ECLIPSE™) ▼	Cancel

Figure 39 Adding Block Property Filter

4.

filter of permeability between 2000 and 4905 md. Clicking on the OK button, filter will be applied on 3D view (Figure 41). Note that the editing of the defined filter is allowed by double clicking on the added one in the Filters section. If user unchecks the minimum or maximum limits of the filter, the minimum and maximum values of the property in the model are assumed for them. respectively. The invert filter check box is available also, for this type of filtering.

<				
🍭 Property Filter				
Property Filter				IJK
Filter Name:		В	llock_Property_1	
Invert the whole filter				
Property to Filter:		PERMX		-
Property Date:		2005/02/01		•
👿 Use Minimum Limit:	20	00	mDarcy	Reset
🔽 Use Maximum Limit:	490)5.0	mDarcy	Reset
Metric (ECLIPSE™) ▼		C	ancel	ОК

Figure 40 Adding Block Property Filter on X-Permeability

Figure 41 Applied Permeability Filter on 3D View

5. *Block Logical Filter*: This type of filter is used for performing logical operations of "AND", "OR", or "NOT". For performing logical filter at least two filters are required. The dialog of the Figure 42 is displayed if user wants to add block logical filter.

Page 47

💐 Logical Filter	
Logical Filter	IJK
Filter Name: Block_Logical_1 Invert the whole filter Block_Box_1 Block_Geometry_1	AND OR NOT
Cancel	ОК

Figure 42 Adding Logical Filter

At first user must select a filter, a logical operation and then another filter. For example Figure 43 displays the Block_Box_1 or Block_Geometry_1 Filters i.e. both of them is displayed in 3D view. The name of the "Block_logical_##" is assigned to the defined block property filter, by default; this name is editable. Note that since the "NOT" operation is not a binary operation so it must be used before desired filter which you want to exclude it. Figure 44 displays the using "NOT" logical operation. The multiple and selective remove options are available for created filters.

Note: The sign of "OR" in script is *||*, the sign of "NOT" and "AND" is "!" and "&&" respectively.

💐 Logical Filter	Logical Filter	
Logical Filter	IJK Logical Filter	-
Filter Name: Block_Logical_1	Filter Name:	Block_Logical_1
Invert the whole filter	Invert the whole filter	
Block_Box_1 Block_Geometry_1	AND Block_Box_1 OR Block_Geometry_1 Block_Logical_1	

The "Enhanced Probe" tab is used to show the block information such as IJK index, global index and grid properties. In this tab user can insert node Id and press apply to get the related information. Also, user can select a nod from the 3D view of the model, by right clicking on specific node.

If user selects a node from 3D view by click, a pink sphere will appear on the selected node to indicate the selected grid and related information is displayed in status bar messages. Figure 45 shows the "Enhanced Probe" tab, status bar and the selected node on 3D view.

Note: The left panel hide or show actions can be performed using 🛱 button.

Figure 45- Enhanced Probe Tab

2-4-3- Well Path

There are three import options in this tab:

- 1. Import Well Path
- 2. Import Well Event
- 3. Import Well Observed Data

Figure 46 displays the well path tab in the left panel, user can import desired data using

Figure 46 Well Path Importing Facility

1- Import Well Path:

Import of well path data is the first step in the well import process. The deviation file can be imported well by well, for several wells together or for multiple wells in one file or even for multiple separated files. If multiple wells are included in a single file there are a series of options for determining how the settings for different wells are distinguished. The deviation file should be in ASCII format with the data organized in columns.

There are eight sections in the import well path dialog including: File Path, Hint, Format, Column and Unit, Reference depth, Vertical Direction, Options, and Preview for the first 200 lines of the imported data.

In the file path section the path for the imported deviation file is displayed. There is a hint section in this dialog which informs user that the "%" symbol in a well name donates a parent/branch relationship. For example a well named P1%B1 indicates that it is a branch from well P1 and the name P1%B1%B2 indicates a branch from well P1%B1 well.

The survey format and calculation method can be set in this section. Data can be of several survey formats:

- Measured depth, inclination, azimuth (MD_INC_AZIM)
 - Angles can be Deg or Rad, azimuth (in degrees) should be between -360 and 360, inclination (in degrees) between 0 and 90, 0 being vertical, 90 horizontal.
- X-offset, Y-offset, True vertical depth (DX_DY_TVD)
- X, Y, True vertical depth (X,Y,TVD)
- X, Y, Z (X_Y_Z)
- Measured depth, X-offset, Y-offset, True vertical depth (MD_DX_DY_TVD)
- Measured depth, X, Y, True vertical depth (MD_X_Y_TVD)
- Measured depth, X, Y, Z (MD_X_Y_Z)

There are three methods of "Linear", "Minimum Curvature", and "Automatic", to calculate the well trajectory using the imported data. If one of the surveys formats which include measured depth is selected, the method is not selectable.

Note that only three columns of the data are enough for calculating well path. User can assign units and number of columns in this section. The reference coordinate and Kelly bushing depth must be entered in "Reference depth" section; if user leaves all the reference fields blank a warning message is displayed. The vertical directions of TVD or Z related to the selected survey format can be set upward or downward in the "Vertical Direction" section. There another section in this dialog titles "Options" which includes "Column and Well Name" and "Comments and Prefix" sub-sections. User can set the columns as number or string by entering N or S for each column, respectively; the well name option which indicates where the well name has been entered in the deviation file is available for user. In the sub-section of "Comments and Prefix" the comment sign, well name line prefix, and missing value sign fields are available for user to editing, also. User can see the first 200 lines data preview in the "Import Well Path" dialog. Figure 47 displays the Import Well Path dialog for a typical deviation file. If user press "OK for all" the setting are applied to all of the imported wells. The imported wells are displayed in well path tab and user can check their check boxes for displaying the in the 3D view. Figure 48 displays the imported well path in 3D view. The multiple selection and remove options are available in this list.

Import We	ell Path													
ort Wel	ll Path													
ile Path (1/:	1):													
:\ESTD\Pro	ojects\RETINA Sim	ulation\Tasks\	Cases\Wellpath\Well_l	Engineering\Well_Engineeri	ng\ImportWells.dev									
Hint:					Preview (First 200	Lines):								
The '%' sym named P1% a branch fro	nbol in a well nam 6B1 indicates that i om well P1%B1.	ie deontes a pa it is a branch fi	rent/branch relationsh rom well P1 and the na	ip. For example, a well me P1%B1%B2 indicates	# WELL TRACE # WELL NAME: # WELL HEAD	FROM PETREL P07	11886598							
An importe from its par	d branch well will rent.	be truncated s	to that it starts at the po	oint where it kicks-off	# WELL HEAD *	Y-COORDINATE: 9740 0.000	99266000							
Format:					# MD AND TVD	ARE REFERENCED (=0	AT KB AND INCP AT KB AND INCP	EASE DOWNWARDS						
Survey for	mat:		MD_X_Y_Z	•	# ANGLES ARE # ANGLES ARE	GIVEN IN DEGREES NOT EXACT (TRACE N	AS NOT IMPORTED	JSING ANGLES)						
Method		LINEAR			#	×	Y 7	TVD	DX	DY	AZTM	TNCI	DLS	
wethou.		LINEAR			*	^								
Column a	nd Unit Column	Unit	Refrence Depth Val	ue Unit	2206.6886392 2221.2720614 2235.8554836	5510.1188659 974 5519.1461490 975 5528 4444818 976	40.9926600 -2206. 52.0736317 -2209. 52.9100532 -2212	588639 2206.68863 584316 2209.58433 547034 2212 54703	90 0.000000000 60 9.027283100 40 18 32561590	0.0000000000 0.11.08097170 0.21.91739320	0 38.43848182 0 39.89920510 0 41 36494847	78.686999207 78.408724779 78.149261449	0.0000000000 0.0000660419 0.0000660419	
X:	2	m •	×0.0		2250.4389057 2265.0223279	5538.0078407 97 5547.8300303 97	73.4949046 -2215. 33.8213289 -2218.	574873 2215.5748 565872 2218.6658	30 27.88897480 20 37.71116440	32.502244600	42.83120025	77.88590359	2.9999227524 2.9999725819	
Y:	3	m •	Y0 0.0		2279.6057501 2294.1891723 2308.7725944	5568.2252864 986 5578.7851406 981	33.8826363 -2221. 33.6723092 -2225. 13.1840055 -2228.	2221.8180 29301 2225.02930 297608 2228.29760	90 47.78582180 10 58.10642050 80 68.66627470	0 62.679649200 0 72.191345500	45.77429937 47.25093292 48.72832843	77.165795347	2.9999365807 2.9999706745 3.0001497269	
Z:	4	m •	KB 0.0		2323.3560166 2337.9394388 2352.5228609	5589.5774095 98 5600.5951017 98 5611.8310797 98	22.4115635 -2231. 31.3490055 -2234. 39.9905417 -2238.	520833 2231.62083 996823 2234.99683 423392 2238.42339	30 79.45854360 30 90.47623580 20 101.7122138	0 81.418903500 0 90.356345500 0 98.997881700	0 50.210262174 0 51.69329998 0 53.18013453	76.722847964 76.50834310 76.314159536	3.0000805855 72.9999992847 2.9997692108	
MD:	1	m 🔻			2367.1062831	5623.2780648 984 5634.9286414 985	48.3305739 -2241. 56.3636993 -2245.	398319 2241.89831 19353 2245.41935	90 113.1591989	0 107.33791390 0 115.37103930	54.667884134 56.15959621	76.11731368	3.0000231266	
Vertical Dire	ection:				2396.2731275	5646.7752621 980	54.0847140 -2248.	84213 2248.9842	30 136.6563962	0 123.09205400	57.65246175	75.762308892	3.0000717640	
● Z↑ (2410.8565496 2425.4399718	5658.8102526 98.	/1.4886163 -2252. 78.5706097 -2256.	236148 2256.23614	100 148.6913867 180 160.9069505	0 130.49595630 0 137.57794970	0 59.148687730 0 60.64568240	75.604471814 75.444486732	2.99995754429	
@ 21 C	Dâ↓				2440.0233940 2454.6068161 2469.1902383	5683.4140400 988 5695.9668983 989 5708.6762593 989	35.3261064 -2259. 31.7507302 -2263. 37.8403191 -2267.	918525 2259.9185 535335 2263.6353 584171 2267.3841	50 173.29517410 50 185.84803240 10 198.55739340	0 144.33344640 0 150.75807020 0 156.84765910	0 62.14608744 0 63.64717645 0 65.15113696	75.305599692 75.164784423 75.045303693	2 3.0000123978 7 3.0000224113 3 3.0001015663	
Options:					2483.7736605	5721.5338897 990	33.5909282 -2271.	162604 2271.1626	40 211.4150238	9 162.59826820	66.65590115	74.924076411	2.9999539852	
Column a	nd Well Name		Comments and Pr	efix	2512.9405048	5747.6605506 993	14.0605275 -2278.	798454 2278.79849	40 237.5416847	9 108.00017210 9 173.06786750	69.67067421	74.723130674	2.9998931885	
Data line Fo	ormat: NNNN	NNNNN	Name line prefix:	# WELL NAME:	2527.5239270 2542.1073492	5760.9126560 993 5774.2791913 993	18.7727354 -2282. 23.1324031 -2286	550923 2282.65092 523100 2286.52310	30 250.7937901	0 177.78007540 0 182.13974310	71.18064706	74.643553356	5 2.9999833107 3.0000674725	
Well Name	Options:		Comment String:	#	2556.6907713	5787.7514975 992	27.1367065 -2290.	12475 2290.4124	50 277.6326316	0 186.14404650	74.20267931	74.503382555	2.9999079704	
Name o	in first data line		Missing value:		2571.2741935	5801.3208471 993	30.7830514 -2294.	316529 2294.31652	90 291.2019812	0 189.7903914	9 75.71525928	74.442847211	1 3.0000848770	
Name o	r every data line				•									
💌 Name a	s part of neader													
Metric (ECL	LIPSE") 🔻											ОК	Cancel	OK

Figure 47 Import Well Path Dialog

Figure 48 Visualizing the Imported Well Paths

2- Import Event File:

The completion events are stored in the completions node under each well node. Choose the import event file option from well path tab import icon; RETINA can import well event data (ASCII) (*.ev) file. Events listed in Table 1 have been supported in current version of the RETINA SimulationTM.

Event name in File	Completion name
Perforation	Perforation
Barefoot	Perforation
Acidize	Stimulation
Stimulate	Stimulation
Frac	Stimulation
Rework	Perforation
Plug	Plug
Squeeze	Squeeze
Welltest	Well test
Welltest-PI	Well test
Welltest-PM	Well test

Table 1 Event and	Completion	Names
-------------------	------------	-------

The format of the events in the event file should be as following:

• <u>Perforation, barefoot and rework:</u>

The WELLNAME keyword is followed by the well. The first column of data is the date at which the events were performed. The following information is the event type, the top Mdepth, the base Mdepth, the wellbore diameter, the skin, optional lump connection, and optional relative permeability scaling.

• Acidize, stimulate, and frac:

These events modify the damaged skin used in the connection factor calculation over a specified measured depth. WELLNAME is present afterward Date, top and bottom Mdepth and Skin should be entered.

• *Plug and squeeze (cement squeeze):* These both act to close connections.

- *Squeeze*: closing connections over a specified range. The squeeze has two items following the squeeze name namely top and bottom measured depth.
- Plug: closing all connections below a given measured depth. The plug has only one data item following the plug name, namely top Mdepth.

• <u>Welltest:</u>

Welltest pacifies the Kh product over the entire well. Following the Welltest name is the Kh value. DATE EVENT Kh skin start-Mdepth stop-Mdepth is after that.

• <u>Welltest-PI</u>

DATE, EVENT, pi-liquid, and pi-gas must be entered respectively, in this event.

• <u>Welltest-PM</u>

DATE, EVENT, pi-multiplier, start-Mdepth, and stop-Mdepth must be entered respectively in this event.

The Import Well Event dialog (Figure 49) is displayed after selecting .ev file using well path tab import facility.

💐 Import	Well Event			-									
Import V	Vell Event												
File Path I D-\ESTD.I Options: Well Nam Name Name 1 2 1 2 1 2 1 2 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 2 1 2 1 1 2 1 2 1 3 1 2 1 2 1 2 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 1 3 1 1 3 1 1 1 3 1 1 1 3 1 1 1 3 1	(1/1): Projects\RETINA Simulat me Options: e of every data line e as part of header > Na Well name in file P07 P08	ion\Tasks\Cases\Wellpat	AME extract	ring\Well_Engi Preview (F UNITS M WELLNAM 14.02.2 14.402.2 14.402.2 14.402.2 14.402.2 14.402.2 14.402.2 14.402.2 14.402.2 14.402.2 14.402.2 14.402.2 14.402.2	neering\VariousEv inst200 Lines): ETRIC E P08 805 Perforati 805 Rework 805 Acidize 805 Stimulato 805 Stimulato 805 Stimulato 805 Stimulato 805 Stimulato 805 Stimulato 805 Superce 805 Welltest 805 Perforati 805 Perforati	ents.ev ion 3400.0 3800.0 3900.0 4900.0 4500.0 5500.0 4500.0 5500.0 4500.0 5500.0 4500.0 5500.0 4500.0 5500.0 4500.0 5200.0 10000 2 3000 PT 100 120 PT 4.5 5100 5120 ion 3000.0 5800.0	0.71 0.3 0.75 1.20 0.75 1.20 0.78 0.9 -10 -5 5258 0.17 10 0.27 20						
				< Units: Variable Unit	1 Measure Depth m	2 Well Bore Diameter m	3 Skin * -	4 KH m².m	5 PI ← m³/day.Bar	6 PI Multiplier •	7 Length m	8 Permeability + mDarcy	9 Orientation deg
Metric (F	ECLIPSE™) ▼										ОК	Cancel	OK for all

Figure 49 Import Well Event Dialog

The import well event dialog consists of four main sections including File Path, Options, Units, and Preview.

In the file path section the path for the imported event file is displayed. User can specify that the well name is repeated every line or as part of header. If user chooses "Name as part of header" the name line prefix must be entered. There is a table of imported wells; user can ignore or map the available wells for importing. There is a section titled "Unit" in this dialog in which user can set the desired unit for each variable independently. The first 200 lines of the imported file are displayed in Preview section. If user press "OK for all" the setting are applied to all of the imported wells. The imported events are displayed in well path tab and user can check their check boxes for displaying the in the 3D view. Figure 50 displays the imported well path in 3D view. The multiple selection and remove options are available in this list. User can define desired event using "+" button.

Figure 50 Visualizing the Imported Well Events

3- Import Observed Data File:

The Observed data is stored in the observed data node under each well node. Choose the import observed data option from well path tab; RETINA can import well event data (ASCII) (*.vol) file.

The import observed data dialog consists of four main sections including File Path, Hint, Options, and Preview as displayed in Figure 51.

2 Import	Observed Data							
Import C	bserved Data							
File Path D:\ESTD\	(1/1): Projects\RETINA Simulat	ion\Tasks\Cases\Wellpath\V	/ell_Engineer	ing\Well_Engineering	\HistProd.vol			
Hints:				Preview (First 200	Lines):			
1. If unit	doesn't entered, it will be	e defaulted to "FIELD".		*METRIC				
2. The or	nly acceptable date separ	ators are ".", "-", "/".		*DAILY				
Options				*IGNORE_MISSI	NG	*****		
Well Nar	me Ontions:			*Name P01	"WCI "WPK	"GPK "OPK "ВНР		E
Name	a on first data line			indiane i ou				
				01.02.2005	0.000000e+000	0.000000e+000	1.323775e+006	
l Name	e or every data line			01.03.2005	0.000000e+000	0.000000e+000	1.405165e+006	
Name	e as part of header > Na	me line prefix: *Name		01.04.2005	0.000000e+000	0.000000e+000	1.473332e+006	
		(at	act	01.06.2005	0.000000e+000	0.000000e+000	1.548823e+006	
		EXI	aci	01.07.2005	0.000000e+000	0.000000e+000	1.580232e+006	
	Well name in file	Available well trace		01.08.2005	0.000000e+000	0.000000e+000	1.607351e+006	
1	P01	Ignore data	-	01.09.2005	0.000000e+000	0.00000e+000	1.622704e+006	
-	D0.2	Ignore data		01.10.2005	0.000000e+000	0.00000e+000	1.644609e+006	
2	FUZ	ignore data	*	01.11.2005	0.000000000000000000000000000000000000	0.000000000000000000000000000000000000	1.680936e+006	
3	P03	Ignore data	-	01.01.2006	0.000000e+000	0.000000e+000	1.705196e+006	
4	P04	Ignore data	-	01.02.2006	0.000000e+000	0.00000e+000	1.722265e+006	
5	P05	Ignore data	-	01.03.2006	0.000000e+000	0.000000e+000	1.739457e+006	
6	P06	Ignore data		01.04.2006	0.00000e+000	0.000000e+000	1.768357e+006	
0	100	Ignore data	*	01.05.2006	0.000000e+000	0.000000000000000000000000000000000000	1.7934270+006 1.828413e+006	
				01.07.2006	0.000000e+000	0.000000e+000	1.905354e+006	
	Data assoc	Descents identifies		01.08.2006	0.000000e+000	0.000000e+000	2.119348e+006	
	Data name	Property Identifier		01.09.2006	0.000000e+000	0.000000e+000	2.217922e+006	
1	WCI	water cut	-	01.10.2006	0.000000e+000	0.00000e+000	2.279473e+006	
2	WPR	Water production rate	-	01.11.2006	0.000000e+000	0.000000e+000	2.30/185e+006	
3	GPR	Gas production rate	-	01.01.2007	0.000000e+000	0.000000e+000	2.273866e+006	
4	OPR	Oil production rate	-	01.02.2007	0.000000e+000	0.000000e+000	2.106873e+006	
5	BHP	Bottom hole pressure	-	01.03.2007	0.00000e+000	0.00000e+000	2.082927e+006	
-	011	2 storr note pressure	•	01.04.2007	0.000000e+000	0.00000e+000	2.074414e+006	
				01.05.2007	0.000000e+000 0.000000e+000	0.000000e+000 0.000000e+000	2.073948e+006 2.072442e+006	
				01.07.2007	0.000000e+000	0.000000e+000	2.072700e+006	
				01.08.2007	0.000000e+000	0.00000e+000	2.109270e+006	
O Creat	te New			01.09.2007	0.00000e+000	0.000000e+000	2.119380e+006	-
Mergenergenergenergenergenergenergenerge	ge with previous			•	III			•
								
						ОК	Cancel	OK for all

Figure 51 Import Observed Data Dialog

In the file path section the path for the imported .vol file is displayed. User can specify that the well name is repeated every line or as part of header. If user chooses "Name as part of header" the name line prefix must be entered. There is a table of imported wells and a separate table of imported historical data; user can ignore or map the available wells and also property identifiers.

If user press "OK for all" the setting are applied to all of the imported wells. The imported observed data are displayed in well path tab. The multiple selection and remove options are available in this list.

4- Convert Imported Data to RETINA Simulation[™]:

User can export the imported data to RETINA using **1**. The Figure 52's dialog, is displayed in case of export data.

If the well path has some intersection with the model grid (Figure 53) the well can be created in the RETINA well manager dialog with related keywords. The exported wells and related keywords are displayed in the Figure 54.

Export Well Path Keywords	
Export Well Path Keyword	is 🔳
Frequency	
Start date:	Tuesday , February 01, 2005
End date:	Thursday , January 01, 2009
Step:	1 MONTHS -
History Rate Control	
Producers control mode:	RESV
Injectors control mode:	RATE
Well shut mode:	SHUT
	Cancel

Figure 52 Export Well Path Keywords Dialog

Figure 53 Intersecting Model Grids and Imported Well Path

Manager							
ells	Well Recurrents						
+	+ -		Keyword Info:				
Well Name	Defined Dates: 2005/02/01	•	Name	Value	Unit	Description	
P07	Kaunada		Open/shut flag	OPEN	-		
D07%D08	Reyworus:		Contorl mode	RESV			
10776000	WCONHIST (2008/08/01)	*	Observed oil production	19165.9	m³/day		
	WCONHIST (2008/09/01)		Observed water production	6.42894	m³/day		
	WCONHIST (2008/10/01)		Observed gas production	3.17656E+06	m³/day		
	WCONHIST (2008/11/01)		Production Well VEP Table	Reset			
	WCONHIST (2008/12/01)		Artificial lift quantity				
	Perforations		Observed tubing head pressure		Bar		
	COMPLETION (2005/02/01)		Observed tubing read pressure	127 621	Dai		
	COMPLETION (2005/02/01)		observed bottom hole pressure	127.031	Ddi		
1	COMPLETION (2005/02/01)						
	COMPLETION (2005/02/01)						
	COMPLETION (2005/02/01)						
+ -	COMPLETION (2005/02/01)						
	COMPLETION (2005/02/01)	=					
lildcard	COMPLETION (2005/02/01)						
	COMPLETION (2005/02/01)						
	WPIMULT (2005/02/01)						
	COMPLETION (2005/02/01)	*					
	* These well recurrents are set from a wildcards. To	change					
	parameters choose the corresponding wildcard.						

Figure 54 Exported Well Path Keywords

Each component of the well path tab has its own data which user can access and edit the desired data by double clicking on the node. For example double clicking on imported well name in well path tab will open the Figure 55's dialog.

Vell	Track Spr	eadsheet	for "P07"								Å
	X (m)	Y (m)	Z (m)	MD (m)	INCL (deg)	AZIM (deg)	DX (m)	DY (m)	TVD (m)	DLS (deg/30m)	
1	5510.12	9740.99	-2206.69	2206.69	78.547	39.1685	0.0	0.0	2206.69	0.0	
2	5519.15	9752.07	-2209.58	2221.27	78.4116	39.8997	9.02728	11.081	2209.58	1.5	
3	5528.44	9762.91	-2212.55	2235.86	78.1464	41.3643	18.3256	21.9174	2212.55	3.0	
4	5538.01	9773.49	-2215.57	2250.44	77.8888	42.8317	27.889	32.5022	2215.57	3.0	
5	5547.83	9783.82	-2218.67	2265.02	77.6389	44.3019	37.7112	42.8287	2218.67	3.0	
6	5557.9	9793.88	-2221.82	2279.61	77.3968	45.7748	47.7858	52.89	2221.82	3.0	
7	5568.23	9803.67	-2225.03	2294.19	77.1629	47.2505	58.1064	62.6796	2225.03	3.0	
8	5578.79	9813.18	-2228.3	2308.77	76.9372	48.7289	68.6663	72.1913	2228.3	3.0	
9	5589.58	9822.41	-2231.62	2323.36	76.72	50.2099	79.4585	81.4189	2231.62	3.0	
10	5600.6	9831.35	-2235.0	2337.94	76.5113	51.6935	90.4762	90.3563	2235.0	3.0	
11	5611.83	9839.99	-2238.42	2352.52	76.3113	53.1797	101.712	98.9979	2238.42	3.0	
12	5623.28	9848.33	-2241.9	2367.11	76.1202	54.6683	113.159	107.338	2241.9	3.0	
13	5634.93	9856.36	-2245.42	2381.69	75.9381	56.1594	124.81	115.371	2245.42	3.0	
14	5646.78	9864.08	-2248.98	2396.27	75.7652	57.6527	136.656	123.092	2248.98	3.0	
15	5658.81	9871.49	-2252.59	2410.86	75.6016	59.1483	148.691	130.496	2252.59	3.0	
16	5671.03	9878.57	-2256.24	2425.44	75.4474	60.646	160.907	137.578	2256.24	3.0	
17	5683.41	9885.33	-2259.92	2440.02	75.3027	62.1458	173.295	144.333	2259.92	3.0	
18	5695.97	9891.75	-2263.64	2454.61	75.1677	63.6474	185.848	150.758	2263.64	3.0	
19	5708.68	9897.84	-2267.38	2469.19	75.0424	65.1509	198.557	156.848	2267.38	3.0	
20	5721.53	9903.59	-2271.16	2483.77	74.927	66.6561	211.415	162.598	2271.16	3.0	
21	5734.53	9909.0	-2274.97	2498.36	74.8215	68.1628	224.413	168.006	2274.97	3.0	
22	5747.66	9914.06	-2278.8	2512.94	74.726	69.671	237.542	173.068	2278.8	3.0	
23	5760.91	9918.77	-2282.65	2527.52	74.6407	71.1804	250.794	177.78	2282.65	3.0	

Figure 55 Well Tack Spread Sheet

3- How to Use Data Toolbar

After creating a new project (<u>refer to section 1-1</u>) and defining desired unit system, user should use data toolbar to define grid geometry, reservoir, wells and output data.

3-1- Using Geometry & Grid Data Tab

This tab which includes seven buttons (<u>refer to section 2-3-1</u>) is used for defining the reservoir dimensions (number of grids in each directions of X, Y, Z), grid data, grid properties, Fault Face or connections and fracture (dual) options.

3-1-1- Define Grid Data

Define Grid Data window (Figure 56) is opened, using the button of initialize simple grid . In this dialog the number of grids is defined only for center point grid data.

Nx, Ny, Nz indicates number of grids in X, Y, Z directions, respectively.

3-1-2- Grid Data Tab

Pressing OK in the "Define Grid Data" will lead user to center point grid data window which is shown in Figure 57. The DX, DY, DZ and TOPS values are required for this type of geometry. DX, DY and DZ are distance of the two neighbor blocks in X, Y and Z directions, respectively.

A) Center Point Geometry Type

As mentioned before, the DX, DY, DZ and TOPS values are required for this type of geometry. In this type of the geometry, user can define dip for the model, using "Define Dip" button. Define Dip window has been shown Figure 58 in which the axis and shift in Z direction (delta Z) must be entered. For example assume you want to define dip for a model with dimension of 3*3*2 with DX=DY=DZ=1 (Figure 59a), if you define dip in X direction with 0.5 m shift in Z direction Figure 59b will be displayed.

💐 Define Grid Data 💶 🗉 💌 🗶							
Define G							
Nx:	34						
Ny:	36						
Nz:	8						
Car	Cancel OK						

2 Center Point Grid Data) X
Center Point Grid Data							[
DX DY DZ	⊲ ⊲	1 (* •	ы					
TOPS	1 (m)	2 (m)	3 (m)	4 (m)	5 (m)	<mark>б (</mark> m)	7 (m)	<u>^</u>
	1							
	2							
	3							
	4							
	5							E
	7							
	8							
	9							
	10							
	11							
	12							
	13							
	14							
	15							
	16							
	17							
	19							
	4							
Grid Coordinate System							Define	Dip
Metric (ECLIPSE™) ▼ 0.00			Copy & Multi	ply Edit Prope	rty Set By La	/er Cance	el Ok	

Figure 57- Center Point Grid Data Window

Q Define Dip	
Define Dip	Ø
Axis:	X
Delta Z:	0.0 m
Metric (Eclipse) 🔻 0.00	Cancel OK

Figure 58 - Define Dip

Figure 59- a) A model without Dip, b) Dip in X direction with 0.5 m shift in Z direction

There is a square field in Figure 57, in which user can enter layer number (K=1, 2...) to see or edit the related values of the data. Also user can use arrows to go to the first layer, previous layer, next layer last layer and jump to a specific layer. Jumping will be done after entering the layer number and press the button of (\frown). There are following buttons in the "Center Point Grid Data" window:

- Define Grid Coordinate System
- Copy & Multiply
- Edit Property
- Set By Layer
- OK
- Cancel

Define Grid Coordinate System:

The local coordinate system is defined using this button. It includes origin coordinate (X, Y, Z), input type, and axis vectors (Figure 60). The input type can be one of the following items:

- X axis & Y axis
- X axis & Z axis
- Y axis & Z axis
- X axis, Y axis & Z axis

💐 Local Coordinate System		
Local Coordinate System		Z
		x y
Origin X:	1053.4	m
Origin Y:	13909.1	m
Origin Z:	0.0	m
Input Type:	X axis, Y axis & Z axis	·
X Axis vector i:	1.0	- [
X Axis vector j:	0.0	- [
X Axis vector k:	0.0] - [
Y Axis vector i:	0.0] - [
Y Axis vector j:	-1.0	•
Y Axis vector k:	0.0	•
Z Axis vector i:	0.0	•
Z Axis vector j:	0.0	-
Z Axis vector k:	-1.0	-
Metric (Eclipse) 🔻 0.00	Cancel	ок

Figure 60- Local Coordinate System

Copy and Multiply:

The "Copy and Multiply" window has been displayed in Figure 61. User can perform copy, multiply or add offset to the selected property, defining the ijk range of the grids in "Box" section. Currently the Y = aX + b formula can be used, Where Y and X are destination and source grid properties, respectively. These properties can be chosen from "Equation" section of the window. If you want to copy a property values to other one you just insert 1 for multiplier "a". If you want to add an offset to the selected property, fill Offset (b) field.

Copy and Multiply Properties							
Copy and Multiply Properties							
Box							
UK Start:	3	5	2				
IJК End:	10	10	3				
Equation							
Destination Grid Property (Yi):	1970/01/01 DX	[•				
Source Grid Property (Xi):	1970/01/01 DZ		-				
Multiplier (a):	1.0		-				
Offset (b):	0.0		ft				
Hint: Yi = aXi + b							
Field • 0.00	Cancel	C	К				

Figure 61- Copy and Multiply Window

Edit Property:

Edit property window consist of four separated sections of, Layer, Region, Grid Data, and Value.

Layer: The layer range is specified (for example 1 to 3).

Region: The region is specified using "Structured Region" button. There are three definition options for defining desired region:

- Define: Structured Box (IJK)
- Define: List of Nod Indices
- Define: Range of Indices

Edit Center Point	
Edit Center Point	
Layers	· · · · · · · · · · · · · · · · · · ·
Start Layer Index:	1 -
End Layer Index:	3 -
Region	
Region:	Structured Region
Region: I:[1 to 10] , J:[1 to	10] , K:[1 to 3]
Grid Data	
Grid Data Name:	DX •
Value	
Value Type:	NUMBER -
Value:	.5 m
Metric (Eclipse)	Cancel OK

Figure 62- Edit Center Point Grid Data Window

<u>Structured Box (IJK)</u>: in this case, the region is defined using grid indices. The box boundary indices of I, J, K are inserted in this window (Figure 63).

💐 Add Region Data		
Add Region Data		
Name:	Structured Region	-
Minimum I:	1] -
Maximum I:	5	-
Minimum J:	3	-
Maximum J:	4	-
Minimum K:	1	-
Maximum K:	2] -
Field • 0.00	Cancel	ок

Figure 63-Define Region Using Structured Box Option

List of Node Indices: in this case, the global indices of the desired list of grids are entered. Note that each index must separate with the next and previous one using space character (Figure 64).

Add Region Data		
Add Region Data		
Name:	Index List Region	-
Indices List:	1 200 158 30] ·
Field • 0.00	Cancel	ОК

Figure 64- Define Region Using List of Node Indices

<u>*Range of Indices*</u>: The range of grid global indices and region name should be entered using this option (Figure 65).

Add Region Data		
Add Region Data		
Name:	Index Range Region	-
From Node Index:	5	-
To Node Index:	290] -
Field • 0.00	Cancel	ОК

Figure 65- Define Region Using Range of Indices

Grid Data: Grid data which is one of the DX, DY, DZ, or TOPS, is selected from exist list.

Value: The desired value of the specified grid data is entered here.

Set By Layer:

This button will lead user to the set layer value window of Figure 66 window. User can enter values for each layer in "value" column. After choosing unit system and grid property name. One of the DX, DY, DZ, or TOPS can be selected from "Grid Property Name" list.

String Conversion Option:

The Button of **0.00** in Figure 66 and all other RETINA windows is used to specify precision and formatting flag of the local window displayed numbers (Figure 67). Currently, the following formats for the numbers are available:

🔍 Se	et Layer Val	ue			
Set	Layer Valı	le			2 ;
Gri	d Property	Name:		1970/01/01 DX	
L	ayer Index	Value	Unit		
	Layer 1	0.0	ft		
	Layer 2	0.0	ft		
	Layer 3	0.0	ft		
_					
_					
Fie	ld	-	0.00	Cancel	ОК

Figure 66- Set Grid Data By Layer

- Scientific Notation (e)
- Scientific Notation (E)
- Floating Point Notation
- Automatic Notation (E)
- Automatic Notation (e)
- Integer

(2) String Conversion Options		
String Conversion Options		.00
Precision:	4	
Formatting Flag:	Automatic Notation (E) 🔻	
	Scientific Notaion (e) Scientific Notaion (E) Floating Point Notation Automatic Notation (e)	ОК
	Integer	

Figure 67- String Conversion Option

B) ZCORN, COORD Geometry Type

This type of geometry is available, only when user imports a data file or a grid file (using grid importer which will be explained in the next section) that includes ZCORN (Corner point Zs) and COORD (coordinate lines) data. In this case the "Grid Data" window will be like Figure 58. Selecting "Coordinate Lines (COORD)" or "Corner Point Zs" by clicking on each one will show the Figure 69 or Figure 70, respectively.

2 Zcorn Coord Grid Data	
Zcorn Coord Grid Data	\bigcirc
Coordinate Lines (COORD)	
Corner Point Zs (ZCORN)	
Grid Coordinate System	
Metric (Eclipse) 🔻 0.00	Cancel OK

Figure 68- ZCORN COORD Geometry Type

*

Zcorn Coord Grid Data								
Zcorn Coord Grid Data								
Coordinate Lines (COORD)								
Corner Point Zs (ZCORN)	~	(< 🗌 1	(~≻	>>				
		1			1	1	1	
		X Bottom (m)	Y Bottom (m)	Z Bottom (m)	X Top (m)	Y Top (m)	Z Top (m)	
	1	-2586.17	1600.67	2106.99	-2680.24	1640.17	2556.15	
	2	-2307.0	1483.61	2109.86	-2392.52	1519.52	2557.82	

	1	-2586.17	1600.67	2106.99	-2680.24	1640.17	2556.15	
	2	-2307.0	1483.61	2109.86	-2392.52	1519.52	2557.82	
	3	-2027.83	1366.55	2115.66	-2104.79	1398.87	2561.24	
	4	-1748.65	1249.49	2124.27	-1817.07	1278.22	2566.31	
	5	-1469.48	1132.43	2135.48	-1529.35	1157.57	2572.77	Ξ
	6	-1190.31	1015.37	2148.93	-1241.62	1036.92	2580.4	
	7	-911.14	898.31	2164.26	-953.9	916.26	2588.97	
	8	-631.96	781.25	2181.13	-666.17	795.61	2598.1	
	9	-352.79	664.19	2198.94	-378.45	674.96	2607.48	
	10	-73.62	547.13	2216.75	-90.72	554.31	2616.53	
	11	205.55	430.07	2232.8	197.0	433.66	2624.46	
	12	484.73	313.0	2362.75	484.73	313.0	2498.55	
	13	803.61	177.05	2372.12	803.61	177.05	2509.77	
	14	1115.84	45.94	2249.62	1115.84	45.94	2631.83	
	15	1428.07	-85.18	2255.06	1428.07	-85.18	2633.87	
	16	1740.31	-216.29	2260.5	1740.31	-216.29	2635.84	
	17	2052.54	-347.4	2267.58	2052.54	-347.4	2638.2	
and Cardena	18	2364.77	-478.51	2274.43	2364.77	-478.51	2640.25	-
mate system								

Figure 69- Coordinate Line Window

n Coord Grid Data								Ę.
rdinate Lines (COORD) ner Point Zs (ZCORN)	« <	1	(~ > »					
		Left 1 (m)	Right 1 (m)	Left 2 (m)	Right 2 (m)	Left 3 (m)	Right 3 (m)	Left 4 (m)
	1Back	2106.99	2109.86	2109.86	2115.66	2115.66	2124.27	2124.27
	1Front	2104.0	2106.97	2106.97	2112.89	2112.89	2121.69	2121.69
	2Back	2104.0	2106.97	2106.97	2112.89	2112.89	2121.69	2121.69
	2Front	2098.01	2101.14	2101.14	2107.32	2107.32	2116.51	2116.51
	3Back	2098.01	2101.14	2101.14	2107.32	2107.32	2116.51	2116.51
	3Front	2088.87	2092.17	2092.17	2098.79	2098.79	2108.47	2108.47
	4Back	2088.87	2092.17	2092.17	2098.79	2098.79	2108.47	2108.47
	4Front	2076.37	2079.94	2079.94	2087.03	2087.03	2097.54	2097.54
	5Back	2076.37	2079.94	2079.94	2087.03	2087.03	2097.54	2097.54
	5Front	2060.39	2064.21	2064.21	2071.89	2071.89	2083.26	2083.26
	6Back	2060.39	2064.21	2064.21	2071.89	2071.89	2083.26	2083.26
	6Front	2040.61	2044.7	2044.7	2052.9	2052.9	2065.37	2065.37
	7Back	2040.61	2044.7	2044.7	2052.9	2052.9	2065.37	2065.37
	7Front	2016.74	2021.02	2021.02	2029.71	2029.71	2043.09	2043.09
	8Back	2016.74	2021.02	2021.02	2029.71	2029.71	2043.09	2043.09
	8Front	1988.56	1992.9	1992.9	2001.76	2001.76	2015.68	2015.68
	9Back	1988.56	1992.9	1992.9	2001.76	2001.76	2015.68	2015.68
	05+	1056.06	1060.2	1060.2	1068 78	1068 78	1082 3/	1087 2/
Grid Coordinate System	•							P.

Figure 70 - Corner Point Zs Window

Always there is numerous data of COORD and ZCORN exists for defining reservoir geometry, so inserting them one by one is impossible. This is the reason for designing grid importer.

Jumping to desired layer or going to next, Previous, first and last layer procedure is similar to center point grid data window.

C) Corner Point Geometry Type

This type of geometry is available, only when user imports a data file or a grid file (using grid importer which will be explained in the next section). Each grid is specified using 8 corners coordinate. The corner point grid data window has been displayed in Figure 71.

ચ ૦	orner Po	int Gri	d Data																		•	3
Corr	ner Poir	nt Gri	d Data																		$\left(\right)$	J
Data	Presenta	ation T	ype: 🔘	I-Row I	Data	© J-Ro	w Data	© K-	Row Data	1											•	
J Inc	dex [14]	1		K In	dex [12]		1	9	Show Lay	er Data	Grid Co	ordinate	Systen	n							
	Cell Co	rner: 1		Cell Co	rner: 2		Cell Co	rner: 3	-	Cell Co	rner: 4		Cell Co	rner: 5		Cell Co	orner: 6		Cell Co	rner: 7		0
	Х	Y	Z	Х	Y	Z	Х	Y	Z	Х	Y	Z	Х	Y	Z	Х	Y	Z	Х	Y	Z	
I: 1	0.0	0.0	4005.0	150.0	0.0	4005.0	150.0	150.0	4005.0	0.0	150.0	4005.0	0.0	0.0	4020.0	150.0	0.0	4020.0	150.0	150.0	4020.0	
I: 2	150.0	0.0	4005.0	300.0	0.0	4005.0	300.0	150.0	4005.0	150.0	150.0	4005.0	150.0	0.0	4020.0	300.0	0.0	4020.0	300.0	150.0	4020.0	1
I: 3	300.0	0.0	4005.0	450.0	0.0	4005.0	450.0	150.0	4005.0	300.0	150.0	4005.0	300.0	0.0	4020.0	450.0	0.0	4020.0	450.0	150.0	4020.0	3
I: 4	450.0	0.0	4005.0	600.0	0.0	4005.0	600.0	150.0	4005.0	450.0	150.0	4005.0	450.0	0.0	4020.0	600.0	0.0	4020.0	600.0	150.0	4020.0	4
_																						
_																						
_																						
_																						
_																						
_																						
_																						
•					m																	Þ
Fie	ld		• 0.00															Ca	incel		ОК	

Figure 71- Corner Point Geometry Type

User can select data presentation types of I, J or K. for example if user select "I-Raw data" and then enter "J Index" and "K Index" of 2 and 1, respectively, layer data is displayed just in case of pressing "Show Layer Data" button (Figure 72).

There is already a "Grid Coordinate System" button which was explained previously in center point grid data section.

20	orner Po	int Grid I	Data																	•	×
Cori	ner Poir	nt Grid	Data																	$\left(\right)$)
Data	Presenta	ation Typ	e: 💿 I	-Row Dat	ta 🔘	J-Row Da	ata 🤅	K-Row	Data												
J In	dex [14	J	2		K Index [12]	1	L	Show	Layer Da	ata Gri	d Coordir	ate Syste	em							
_	Cell Co	rner: 1		Cell Co	rner: 2		Cell Co	rner: 3		Cell Co	rner: 4		Cell Co	rner: 5		Cell Co	rner: 6		Cell Co	rner: 7	
	Х	Y	Z	Х	Y	Z	X	γ	Z	Х	Y	Z	Х	Y	Z	X	Y	Z	Х	Y	
I: 1	0.0	150.0	4000.0	150.0	150.0	4000.0	150.0	300.0	4000.0	0.0	300.0	4000.0	0.0	150.0	4015.0	150.0	150.0	4015.0	150.0	300.0	40
I: 2	150.0	150.0	4000.0	300.0	150.0	4000.0	300.0	300.0	4000.0	150.0	300.0	4000.0	150.0	150.0	4015.0	300.0	150.0	4015.0	300.0	300.0	40
I: 3	300.0	150.0	4000.0	450.0	150.0	4000.0	450.0	300.0	4000.0	300.0	300.0	4000.0	300.0	150.0	4015.0	450.0	150.0	4015.0	450.0	300.0	40
I: 4	450.0	150.0	4000.0	600.0	150.0	4000.0	600.0	300.0	4000.0	450.0	300.0	4000.0	450.0	150.0	4015.0	600.0	150.0	4015.0	600.0	300.0	40
																					-
•																					•
																				_	
Fie	ld	-	0.00														Ca	ancel		ОК	

Figure 72- "I-Raw data" for "J Index" and "K Index" of 2 and 1, respectively

3-1-3- Grid Importer

This window is used to import various grid files for creating model geometry. The grid importer window which has been displayed in Figure 73 includes following components:

- A field for grid File Path
- Grid File Type (one of the GDFILE, RESCUE or GRDECL files)
- Grid Nx, Ny, Nz (number of grids in each direction)
- Grid File Unit
- Nz is Doubled check box

The "GDFILE" grid file type supports the files with format of *.GRID, *.EGRID, *.FEGRID, and *.FGRID. The "RESCUE" file supports *.BIN and *.TXT and GRDECL can use for ZCORN/COORD or DX/DY/DZ/TOPS keyword families. In case of importing grid files user can check the "Nz is Doubled" check box if the imported file has doubled Nz.

Note: Nx, Ny, and Nz are needed only for GRDECL families of keywords.

🍭 Import Grid Da	ita	
Import Grid Da	ta	
File Path:		8
Grid File Type:	GDFILE	GDFILE: *.GRID, *.FGRID, *.EGRID, *.FEGRID
Grid Nx:		RESCUE: *.BIN, *.TXT rescue files
Grid Ny:		GRDECL: Eclipse Keywords: ZCORN/COORD and DX/DY/DZ/TOPS families
Grid Nz:		Nx, Ny and Nz are needed only for GRDECL families of keywords.
Grid File Unit:	FIELD 🔻	
NZ is Doubled		
		Cancel OK

Figure 73 Import Grid Data Dialog

3-1-4- Grid Property

Grid properties window is used to define and edit grid properties. Figure 74 shows the typical "Grid Properties" window.

a Grid Proper	ties View		
Grid Propert	ies		
+ - List of Grid Pro	perties:		
Property	Unit	Date	
ACTNUM	-	2005/02/01	
EQLNUM	-	2005/02/01	
PERMX	mDarcy	2005/02/01	
PERMY	mDarcy	2005/02/01	
PERMZ	mDarcy	2005/02/01	
PORO	-	2005/02/01	
PORV	m³	2005/02/01	
PVTNUM	-	2005/02/01	
ROCKNUM	-	2005/02/01	
SATNUM	-	2005/02/01	
Copy & Multiply Edit Property		Edit Property	
Set By Layer		Set Defaults	
Import Data		Create Custom Property	
Metric (ECLI	PSE™) ▼	0.00	Cancel OK

Figure 74- Grid Properties Window

Supported Grid Properties:

The following list of grid array properties has been supported in RETINA:

1- ACTNUM (Active grid block identification):

The value of 0 Indicates that the corresponding grid block is inactive, and 1 Indicates that the corresponding grid block is active. It should be noted that ACTNUM is one of a number of ways of identifying inactive grid blocks; any method that results in zero pore volume will cause a grid block to be treated as inactive. Any grid blocks that do not have an ACTNUM value entered default to active (1). Other possibilities include:

- Setting the porosity, or net to gross thickness ratio, to zero.
- Setting a minimum threshold pore volume; any grid blocks having a pore volume smaller than the minimum pore volume will be treated as inactive.

2- DPNUM (Identifies extent of dual porosity region):

It may be used for a dual porosity, single permeability run to specify regions within the reservoir to be treated as single porosity only. Only the values of 0 or 1 are allowed for each grid block in the first matrix layers, to indicate whether the grid block should be modeled as single porosity (0) or dual porosity (1). Any grid blocks that do not have a DPNUM value entered default to dual porosity. Note that this grid block property are only required for the matrix cells; the fracture cells are made inactive and ignored. Within single porosity regions, flow is between matrix blocks. Wells may only connect with the matrix blocks in single porosity regions.

3- DZMTRXV (The vertical dimension of a block of matrix material):

If the dual porosity gravity imbibition option is being used (GRAVDR, GRAVDRM,), this grid property should be used to specify the vertical dimension of a typical block of matrix material. The strength of the gravity imbibition effect is directly proportional to this. The effect is usually very small. However, in the absence of capillary pressure, there is no other mechanism to equalize the fluid levels in matrix and corresponding fracture cells. Any positive real number is allowed for this grid property. Note that this grid block property are only required for the matrix cells; so the matrix cell values are copied into the fracture grids.

4- ENDNUM (End point scaling versus depth region numbers):

Any integer for every grid block in this property specifies the end point scaling versus depth table region to which it belongs. The region number should not be less than 1. The region number specifies which end point scaling versus depth

table should be used to calculate the saturation table end points for each grid block. The end point scaling option should be activated in the End Point Scaling dialog.

5- EQLNUM (Equilibration region numbers):

Any integer for every grid block in this property specifies the equilibration region to which it belongs. The region number should not be less than 1. All blocks with the same equilibration region number must also have the same PVT region number (PVTNUM).

6- FIPNUM (Fluid in place region numbers):

Any integer for every grid block in this property specifies the fluid in place region to which it belongs. The region numbers should not be less than 1. This property defines the standard set of fluid in place regions. Note that the pore volume will include the pore volume of any aquifers associated with the region. Aquifer cells with no explicit region number are assigned to region 1.

7- FLUXNUM (Identifies extent of each flux region):

Any integer for every grid block in this property specifies the flux region number to which it belongs. If a zero FLUXNUM region is copied in to a REGIONS array then the destination array will be set to 1. Any cells not explicitly assigned a FLUXNUM value will be defaulted to a value of 1.

8- IMBNUM (Imbibition saturation function region numbers):

Any integer for every grid block in this property specifies the saturation function region number to which it belongs. This property is used in runs in which the hysteresis option is being used. It specifies which saturation table is to be used for each cell for imbibition processes. The usual saturation table numbers specified using the SATNUM property is used for drainage processes and equilibration. The region number should not be less than 1. The saturation function region number specifies which set of saturation functions should be used to calculate relative permeabilities and capillary pressures in each grid block when hysteresis is being used.

9- IWORK (Integer work array names):

Work arrays of double-precision or integer type may be specified, as required by the desired operation.

10-KRG, KRGR (Scaled end-point gas relative permeabilities):

The KRG and KRGR allow scaling of the relative permeability of gas within each grid block. KRG scales the Kr at the maximum gas saturation (typically at connate

water), and KRGR scales the relative permeability at residual oil saturation (or critical water in a gas-water run). The property can only be used when the end point scaling option is active. If the KRGR keyword has not been used, the KRG keyword has the effect of scaling the relative permeability value calculated from the appropriate saturation table after the scaled saturation end-points have been accounted for. The relative permeability is taken to be the value at either the maximum saturation of the saturation table or at SGU if this has been specified. This is usually equal to 1-Swco. Note that, none of the KRG keywords should be used if gas is not present in the model. Any real number can be inserted for the KRG for each grid block.

11-KRO, KRORG, KRORW (Scaled end point oil relative permeabilities):

The KRO, KRORW, and KRORG properties scale the relative permeability of oil within each grid block. KRO scales the Kr at the maximum oil saturation (typically at connate water), KRORW scales the relative permeability at the critical water saturation, and KRORG scales the relative permeability at the critical gas saturation. The property can only be used when the end-point scaling option is active. If the KRORW and KRORG properties have not been used, the KRO has the effect of scaling the relative permeability value calculated from the appropriate saturation table after the scaled saturation endpoints have been accounted for. The relative permeability is taken to be the value at either the maximum saturation of the saturation table or at SWL if this has been specified.

In three-phase cases using the STONE II Model for three-phase relative permeability, the oil relative permeability is a function of the water and gas relative permeabilities, and hence the oil relative permeability is modified by use of the KRW and KRG keywords to scale the water and gas relative permeabilities.

12-KRW, KRWR (Scaled end point water relative permeabilities):

The KRW and KRWR scale the relative permeability of water within each grid block. KRW scales the Kr at the maximum water saturation (typically at a water saturation of 1.0), and KRWR scales the relative permeability at residual oil saturation (or residual gas in a gas- water run). The keyword can only be used when the end-point scaling option is active. If the KRWR has not been used, the KRW has the effect of scaling the relative permeability value calculated from the appropriate saturation table after the scaled saturation end-points have been accounted for. The relative permeability is taken to be the value at either the maximum saturation of the saturation table or at SWU if this has been specified.

13-LX (X direction matrix block sizes for the viscous displacement option):

This property defines the representative matrix block size in the X direction. Any positive real number for every grid block is allowed for this property.

14-LY (Y direction matrix block sizes for the viscous displacement option):

This property defines the representative matrix block size in the Y direction. Any positive real number for every grid block is allowed for this property.

15-LZ (Z direction matrix block sizes for the viscous displacement option):

This property defines the representative matrix block size in the Z direction. Any positive real number for every grid block is allowed for this property.

16-MINPVV (Sets minimum pore volumes cells must have to be active):

This property is used to declare a threshold pore volume that a cell must exceed or it will made inactive. Any positive real number for every cell specifying its threshold pore volume in the current units, are allowed. This causes any cell with a pore volume less than the input value associated with that cell to become inactive. An inactive cell does not contribute to the total pore volume of the system, and is treated by default as a barrier. In order for non-neighbor connections to be established between adjoining cells across an inactive cell, pinchouts must be enabled using the keyword PINCH or PINCHOUT, and non-neighbor connections must be enabled.

Cells which have been set inactive via the ACTNUM property remain so even if their pore volume exceeds the threshold; using MINPVV only affects active cells. Any minimum pore volumes that are not specified is set to 0.

Note: Cells which have been deactivated by the ACTNUM keyword will remain inactive even if the cell volume is greater than the minimum set by MINPVV. Cells which have been left active by the ACTNUM keyword will be made inactive if the cell volume is less than the minimum set by MINPVV.

Note: Using the PORV to reset the pore volumes to greater than the minimum value will reactivate an inactive cell regardless of how it was deactivated, whether by ACTNUM or by MINPVV.

17-MULTNUM (Defines regions for applying inter-region transmissibility multipliers): MULTNUM provides an alternative region definition for applying inter-region multipliers, instead of applying them to flux regions defined by FLUXNUM. The

MULTNUM property can be used to work with transmissibility multipliers using the MULTREGT, or with the MULTREGP (which sets a pore volume multiplier for a specific region). Any integer is allowed for MULTNUM for each grid cell, specifying the region number to which it belongs. Any cells not explicitly assigned a value of MULTNUM will be taken to be in region 1.

Note: 0 is a valid value for MULTNUM similarly to FLUXNUM.

18-MULTPV (Pore volume multipliers):

Any non-negative real number for every grid block can be assigned to the MULTPV property. The values specified act as multipliers on the pore volumes. Any MULTPV values that are not specified, default to 1.0.

19-NTG (Net to gross thickness ratio):

Any non-negative real number for every grid block can be assigned to the NTG property. The values specified are used to convert from gross to net thicknesses, and act as multipliers of grid block pore volumes and transmissibility values in the X and Y directions, and also on DZ for the calculation of well connection transmissibility factors. Any NTG values which are not specified default to 1.0.

Grid blocks whose pore volume is zero are assumed as inactive. Since the computing time and storage space requirements of a run depend primarily on the number of active grid blocks, it is important that inactive blocks should be unambiguously identified. This is best done by setting either PORO or NTG to zero in inactive blocks. It is also possible to set pore volumes directly, or to use the ACTNUM property.

20-OILAPI (Initial oil API values, for API tracking option):

Any real number for every grid block, specifying the initial oil API gravity can be assigned to this property.

21-OPERNUM (Defines regions for performing operations on arrays):

The OPERNUM property provides a region definition for performing arithmetic operations on property arrays. Any integer for each grid cell, specifying the region number to which it belongs, can be set to the OPERNUM. Any cells not explicitly assigned a value of OPERNUM are taken to be in region 0, which implies that no operation is allowed for this particular cell.

Note: For use with the Dual Porosity option, only the matrix cells or the fracture cells need to be input. The cell values in the other porosity are copied automatically.

22-PBUB (Initial bubble point pressure):

This is an alternative to the RS for defining the initial dissolved gas distribution in runs with enumerated initial conditions. When using explicit initialization, you must ensure that the initial solution is stable and physically reasonable.

23-PCG (Scaled maximum gas capillary pressures):

PCG allows the maximum gas-oil capillary pressure to be scaled on a grid block by grid block basis. It can only be used when the end-point scaling option is active, otherwise it is ignored. If the PCG is omitted, the maximum gas Pc value defaults to the value used in the appropriate gas saturation function table.

The PCG should not be used in combination with the J-function option. In this case, the J-function calculation always defines the gas capillary pressure scaling and the input PCG array is ignored.

24-PCW (Scaled maximum water capillary pressures):

PCW allows the maximum water-oil (or water-gas) capillary pressure to be scaled on a grid block by grid block basis. It can only be used when the end-point scaling option is active, otherwise it is ignored. If the PCW is omitted, the maximum water Pc value defaults to the value used in the appropriate water saturation function table.

The PCW should not be used in combination with the J-function option. In this case, the J-function calculation always defines the water capillary pressure scaling and the input PCW array is ignored.

25-PDEW (Initial dew point pressure):

This is an alternative to the RV for defining the vaporized oil distribution in runs with enumerated initial conditions. When using explicit initialization, you must ensure that the initial solution is stable and physically reasonable.

26-PERMX (Specifies X-permeability values):

PERMX specifies the permeability values in the X-direction. Permeability values must be non-negative. Every PERMX value in the top plane (K = 1) must be specified. Values in lower planes (K > 1) that are not specified default to the value in the plane above.

Note: This is not the permeability between a cell and its neighbor. The transmissibility between a cell and its neighbor involves the permeability values for both cells.

27-PERMY (Specifies Y-permeability values):

PERMY specifies the permeability values in the Y-direction. Permeability values must be non-negative. Every PERMY value in the top plane (K = 1) must be

specified. Values in lower planes (K > 1) that are not specified default to the value in the plane above.

Note: This is not the permeability between a cell and its neighbor. The transmissibility between a cell and its neighbor involves the permeability values for both cells.

28-PERMZ (Specifies Z-permeability values):

PERMZ specifies the permeability values in the Z-direction. Permeability values must be non-negative. Every PERMZ value in the top plane (K = 1) must be specified. Values in lower planes (K > 1) that are not specified default to the value in the plane above.

Note: This is not the permeability between a cell and its neighbor. The transmissibility between a cell and its neighbor involves the permeability values for both cells.

29-PORO (Specifies the grid block porosity values):

Any non-negative real number for every grid block can be assigned to the PORO, specifying the fractional porosity value for each cell. Grid blocks whose pore volume is zero are treated by the program as inactive. Since the computing time and storage space requirements of a run depend primarily on the number of active grid blocks, it is important that inactive blocks should be unambiguously identified. This is best done by setting either PORO or NTG to zero in inactive blocks. It is also possible to set pore volumes directly (array PORV), or to use the ACTNUM property.

30-PORV (Specifies the grid block pore volumes):

PORV can be assigned by any non-negative real number for every grid block in the specifying the grid block pore volumes. Any pore volumes that are not altered remain at the values calculated by the program from the grid data. Grid blocks whose pore volume is zero are treated by the program as inactive. Since the computing time and storage space requirements of a run depend primarily on the number of active grid blocks, it is important that inactive blocks should be unambiguously identified. This can be done either by using the PORV to overwrite pore volumes directly, or by setting PORO or NTG to zero. The ACTNUM can also be used to identify inactive grid blocks.

31-PRESSURE (Initial pressures):

Any real number for every grid block specifying the initial pressure can be assigned to the PRESSURE. This property must be used with other properties (such as SWAT or SGAS) sufficient to define the initial state explicitly for the run.

32-PVTNUM (PVT region numbers):

Any integer for every grid block specifying the PVT region to which it belongs can be assigned to the PVTNUM. The region number should not be less than 1. All grid blocks within a particular equilibration region must have the same PVT region number. The PVT region number specifies which set of PVT tables (input using DENSITY, PVDG, PVDO, PVTG, PVTO, PVCO, PVTW and ROCK) should be used to calculate PVT properties of fluids in each grid block.

33-ROCKNUM (Rock compaction table region numbers):

Any integer for every grid block, specifying the rock compaction table region to which it belongs, can be set to the ROCKNUM. The region number should not be less than 1. The region number specifies which rock compaction table should be used to calculate the porosity and permeability multipliers for each grid block. The Rock Compaction option must be enabled in Rock region data dialog.

If the ROCKTSIG table is used to specify pressure tables of the sigma multiplier for matrix-fracture coupling in dual porosity runs, only the ROCKNUM numbers of the matrix cells are used to obtain the pressure tables. The ROCKNUM numbers of the fracture cells are ignored.

34-RS (Initial solution gas-oil ratios):

Any real number for every grid block, specifying the initial solution gas-oil ratio can be set to the RS. This is an alternative to the PBUB for defining the initial dissolved gas distribution in runs with enumerated initial conditions

35-RV (Initial vapor oil-gas ratios):

Any real number for every grid block, specifying the vapor oil-gas ratio can be set to the RV. This is an alternative to the PDEW for defining initial vaporized oil distribution in runs with enumerated initial conditions

36-SATNUM (Saturation function region numbers):

Any integer for every grid block, specifying the saturation function region to which it belongs, can be set to the SATNUM. The region number should not be less than 1. The saturation function region number specifies which set of saturation functions (input using SGFN, SOF3 and etc.) should be used to calculate relative permeabilities and capillary pressures in each grid block.

37-SGAS (Initial gas saturations):

SGAS can include any real number for every grid block specifying the initial gas saturation. This may be used to specify the initial solution explicitly, as an alternative to equilibration using EQUIL. It is expected if the PRESSURE is present, indicating explicit initialization.

38-SGCR (Scaled critical gas saturations):

The SGCR and specifies the critical gas saturation (that is the largest gas saturation for which the gas relative permeability is zero) within each grid cell. The free gas flow across each grid face is calculated from a transformed gas relative permeability curve obtained by linearly scaling the tabulated relative permeability data between the new critical gas saturation defined using an SGCR, and the new maximum gas saturation (SGU). The SGCR also permits scaling of the relative permeability table used in computing the flow of free gas between grid cells and well connections.

39-SGL (Scaled connate gas saturations):

The SGL specifies the connate gas saturation (that is the smallest gas saturation in a gas saturation function table) within each grid cell. The gas-oil capillary pressure for gas flow across each grid face is calculated from a transformed gas-oil capillary pressure curve obtained by linearly scaling the tabulated capillary pressure data between the new connate gas saturation defined using an SGL, and the new maximum gas saturation (SGU). The SGL also permits scaling of the gas-oil capillary pressure table used in computing the initial gas saturations.

40-SGLPC (Scaled connate gas saturations, for Pc curves only):

The SGLPC scales the connate gas end point of the gas-oil capillary pressure curves without scaling the corresponding oil relative permeability curves. The SGLPC should not be used unless gas is present in the model. The endpoint scaling option must be enabled for this property. The SGLPC values can be any real number for each grid block, specifying the connate gas saturation within the grid block. The saturation should be in the range 0.0 to 1.0 inclusive. If SGLPC is not specified, the gas-oil capillary pressure scaling is performed using the connate gas saturation specified with the SGL. If in turn SGL, are omitted, then the connate gas saturation for a gas-oil capillary pressure calculation defaults to the value used in the appropriate gas saturation function table. If the hysteresis model is active then the SGLPC data will scale the drainage curve.

41-SGU (Scaled saturation table maximum gas saturations):

SGU specifies the maximum gas saturation (that is the largest gas saturation in a gas saturation function table) within each grid cell. The scaled maximum gas saturation is used to determine the scaled forms for the gas-oil capillary pressure curves and the gas relative permeability curves. The scaled form of the capillary pressure curves is obtained by linearly scaling the tabulated capillary pressure data between the new connate gas saturation and the new maximum gas saturation defined using an SGU. A similar linear transformation is used to produce the scaled gas relative permeability curves using the new critical gas saturation and the new maximum gas saturation defined using an SGU. The scaled capillary pressure and relative permeability curves are then used to compute the free gas flow out of each grid cell face, the free gas flow between grid cells and well connections and in the equilibration algorithm.

42-SGUPC (Scaled maximum gas saturations, for Pc curves only):

The SGUPC scales the maximum gas end point of the gas-oil capillary pressure curves without scaling the corresponding oil relative permeability curves. The SGUPC should not be used unless gas is present in the model. The endpoint scaling option must be enabled for this property. The SGUPC values can be any real number for each grid block, specifying the maximum gas saturation within the grid block. The saturation should be in the range 0.0 to 1.0 inclusive. If SGUPC is not specified, the gas-oil capillary pressure scaling is performed using the maximum gas saturation specified with the SGU. If in turn SGU, are omitted, then the maximum gas saturation for a gas-oil capillary pressure calculation defaults to the value used in the appropriate gas saturation function table. If the hysteresis model is active then the SGUPC data will scale the drainage curve.

43-SIGMAGDV (Matrix-fracture coupling for oil-gas gravity drainage):

The SIGMAGDV can be used to specify an alternative matrix-fracture coupling for matrix cells in which the production mechanism is gravity drainage due to the presence of gas in the fractures. Any positive real number for every grid block can be assign to the SIGMAGDV. Any values input in the fracture grids will be ignored. The SIGMAGDV property is only available in three-phase dual porosity runs.

44-SIGMAV (Dual porosity matrix-fracture coupling):

If the dual porosity option is enabled, this property can be used to specify a multiplier to be applied in the construction of the matrix-fracture coupling transmissibilities.

45-SOGCR (Scaled critical oil-in-gas saturations):

The SOGCR specifies the critical oil-in-gas saturation (that is the largest oil saturation for which the oil relative permeability is zero in an oil-gas-connate water system) within each grid cell. The oil flow across each grid face in an oil-gas connate water system is calculated from a transformed oil-gas relative permeability curve obtained by linearly scaling the tabulated oil-gas relative permeability data between the new critical oil-in-gas saturation defined using an SOGCR, and the new maximum oil saturation. The SOGCR also permits scaling of the oil-gas relative permeability table used in computing the flow of oil between grid blocks and well connections. The SOGCR should not be used if either oil or gas is absent from the model. The end point scaling must be enabled in the end point scaling dialog.

46-SOWCR (Scaled critical oil-in-water saturations):

The SOWCR specifies the critical oil-in-water saturation (that is the largest oil saturation for which the oil relative permeability is zero in an oil-water system) within each grid cell. The oil flow across each grid face in an oil-water system is calculated from a transformed oil-water relative permeability curve obtained by linearly scaling the tabulated oil-water relative permeability data between the new critical oil-in-water saturation defined using SOWCR, and the new maximum oil saturation. The SOWCR also permits scaling of the oil-water relative permeability table used in computing the flow of oil between grid cells and well connections. The SOWCR should not be used if either oil or water is absent from the model. The end point scaling must be enabled in the end point scaling dialog.

47-SWAT (Initial water saturations):

This property may be used to specify the initial solution explicitly, as an alternative to equilibration using EQUIL. It will be expected if the PRESSURE property is present, indicating explicit initialization, and if a water phase is present. When using explicit initialization, you must ensure that the initial solution is stable and physically reasonable.

48-SWATINIT (Initial water saturations for capillary pressure scaling):

This property allows you to input a water distribution and to scale the water-oil capillary pressure curves such that this water distribution is honored in the equilibrated initial solution. Note that any water saturation value that cannot be honored because it is below the water contact is reset to the maximum water saturation in the subsequent equilibration calculation. The scaled maximum water capillary pressures (PPCW) can be output to the print file. This can be used to

check for un-physically high maximum capillary pressures, which can be limited by using the PPCWMAX. The SWATINIT property may only be used if the end point scaling option is active.

Note: If a grid block is given a water saturation less than 1.0 below the oil water contact (where Pc=0), then the SWATINIT saturation is not honored. If a cell is given saturation corresponding to a zero capillary pressure (typically 1.0) above the contact, then the Pc curve cannot be scaled to honor the saturation, hence the Pc curve is left unscaled.

Note: If the SWATINIT saturation is less than the connate water saturation for a cell, the initial water saturation will be reset to the connate saturation and the capillary pressure will be scaled according to this value.

Note: If the PCW property has been used, then this is ignored in regions where SWATINIT is set.

Note: If the Leverette J-function calculation for the water-oil capillary pressure has been activated through the JFunc combo box in the saturation region data dialog, then J-function calculation is ignored in regions where SWATINIT is set.

Note: The SWATINIT saturation is not honored if the capillary pressure curve is a constant. The input capillary pressure curve needs to be monotonically decreasing with increasing water saturation.

49-SWCR (Scaled critical water saturations):

The SWCR specifies the critical water saturation (that is the largest water saturation for which the water relative permeability is zero) within each grid cell. The water flow across each grid face is calculated from transformed water relative permeability curve obtained by linearly scaling the tabulated relative permeability data between the new critical water saturation defined using SWCR, and the new maximum water saturation (SWU). The SWCR property also permits scaling of the relative permeability table used in computing the flow of water between grid cells and well connections. The SWCR should be used if water exists in the model. The end point scaling must be enabled in the end point scaling dialog.

50-SWL (Scaled connate water saturations):

SWL specifies the connate water saturation (that is the smallest water saturation in a water saturation function table) within each grid cell. The oil-water (or gas water) capillary pressure used in computing the water flow across each grid face is calculated from a transformed water capillary pressure curve obtained by linearly scaling the tabulated capillary pressure data between the new connate water

saturation defined using SWL, and the new maximum water saturation (SWU). The SWL also permits scaling of the water capillary pressure table used in computing the initial water saturation distribution. The SWL should be used if water is present in the model.

51-SWLPC (Scaled connate water saturations, for Pc curves only):

The SWLPC scales the connate water end point of the oil-water capillary pressure curves without scaling the corresponding oil relative permeability curves. The SWLPC should not be used unless water is present in the model. The end point scaling must be enabled in the end point scaling dialog. The saturation should be in the range 0.0 to 1.0 inclusive. If SWLPC is not specified, the oil-water (or gas water) capillary pressure scaling is performed using the connate water saturation specified with the SWL. If in turn SWL is omitted, then the connate water saturation for an oil-water (or gas-water) capillary pressure calculation defaults to the value used in the appropriate water saturation function table. If the hysteresis model is active then the SWLPC data will scale the drainage curve.

52-TRANX (X-direction transmissibility values):

TRANX specifies the transmissibility values explicitly, replacing those calculated by the RETINA. The TRANX applies to transmissibilities in the X-direction. Any non-negative real number for every grid block can be assigned to the TRANX. The values specified overwrite the X-direction transmissibilities calculated by RETINA for the +X face of each grid block. Thus, a value specified for block (I, J, K) is the transmissibility between blocks (I, J, K) and (I+1, J, K).

Note: TRANX does not affect non-neighbor connections due to faults.

53-TRANY (Y-direction transmissibility values):

TRANY specifies the transmissibility values explicitly, replacing those calculated by the RETINA. The TRANY applies to transmissibilities in the Y-direction. Any non-negative real number for every grid block can be assigned to the TRANY. The values specified overwrite the Y-direction transmissibilities calculated by RETINA for the +Y face of each grid block. Thus, a value specified for block (I, J, K) is the transmissibility between blocks (I, J, K) and (I, J+1, K).

Note: TRANY does not affect non-neighbor connections due to faults.

54-TRANZ (Z-direction transmissibility values):

TRANZ specifies the transmissibility values explicitly, replacing those calculated by the RETINA. The TRANZ applies to transmissibilities in the Z-direction. Any nonnegative real number for every grid block can be assigned to the TRANZ. The

values specified overwrite the Z-direction transmissibilities calculated by RETINA for the +Z face of each grid block. Thus, a value specified for block (I, J, K) is the transmissibility between blocks (I, J, K) and (I, J, K+1).

Note: TRANZ does not affect non-neighbor connections.

55-WORK (work array names):

Work arrays of double-precision type may be specified, as required by the desired operation.

56-MULTX (Transmissibility multipliers in X-direction):

The values specified act as multipliers on the transmissibilities calculated by the program for the +X face of each grid block or specified directly using TRANX. Thus, a value of MULTX specified for block (I, J, K) multiplies the transmissibility between blocks (I, J, K) and (I+1, J, K). Any non-neighbor connections generated due to faults have transmissibilities that reflect the MULTX values. Non-neighbor connections entered explicitly using the NNC keyword are not affected.

57-MULTX- (Transmissibility multipliers in negative X-direction):

The values specified act as multipliers on the transmissibilities calculated by the program for the -X face of each grid block or specified directly using TRANX. Thus, a value of MULTX- specified for block (I, J, K) multiplies the transmissibility between blocks (I, J, K) and (I-1, J, K). Any non-neighbor connections generated due to faults have transmissibilities that reflect the MULTX- values. Non-neighbor connections entered explicitly using the NNC keyword are not affected.

58-MULTY (Transmissibility multipliers in Y-direction):

The values specified act as multipliers on the transmissibilities calculated by the program for the +Y face of each grid block or specified directly using TRANY. Thus, a value of MULTY specified for block (I, J, K) multiplies the transmissibility between blocks (I, J, K) and (I, J+1, K). Any non-neighbor connections generated due to faults have transmissibilities that reflect the MULTY values. Non-neighbor connections entered explicitly using the NNC keyword are not affected.

59-MULTY- (Transmissibility multipliers in negative Y-direction):

The values specified act as multipliers on the transmissibilities calculated by the program for the -Y face of each grid block or specified directly using TRANY. Thus, a value of MULTY- specified for block (I, J, K) multiplies the transmissibility between blocks (I, J, K) and (I, J-1, K). Any non-neighbor connections generated due to faults have transmissibilities that reflect the MULTY- values. Non-neighbor connections entered explicitly using the NNC keyword are not affected.

60-MULTZ (Transmissibility multipliers in Z-direction):

The values specified act as multipliers on the transmissibilities calculated by the program for the +Z face of each grid block or specified directly using TRANZ. Thus, a value of MULTZ specified for block (I, J, K) multiplies the transmissibility between blocks (I, J, K) and (I, J, K+1). Any non-neighbor connections generated due to faults have transmissibilities that reflect the MULTZ values. Non-neighbor connections entered explicitly using the NNC keyword are not affected.

61-MULTZ- (Transmissibility multipliers in negative Z-direction):

The values specified act as multipliers on the transmissibilities calculated by the program for the -Z face of each grid block or specified directly using TRANZ. Thus, a value of MULTZ- specified for block (I, J, K) multiplies the transmissibility between blocks (I, J, K) and (I, J, K-1). Any non-neighbor connections generated due to faults have transmissibilities that reflect the MULTZ- values. Non-neighbor connections entered explicitly using the NNC keyword are not affected.

User can add or remove an existed property using + and - buttons, respectively. New property can be selected (checking box) and added to the property list from "Add Properties" window (Figure 75). You can also assign a default value for each selected property in this window. In case of dual models the values for matrix and fracture grids are entered in separate columns. Pressing "OK" button will add the selected properties to grid property list.

There are Edit Property, Copy and Multiply, Set By Layer, Set defaults, and Import data buttons in "Grid Properties" window. The first three buttons act like what we introduced in "<u>Grid</u> <u>Data</u>" window, so here just "Set Defaults", "Import Data", and "Create Custom Property" buttons are introduced.

Non-Scheduable Arays Default Value Unit Date 1 Grid Property Name Default Value Unit Date 1 1986/06/11 1 1986/06/11 1 1986/06/11 1 1986/06/11 1	Add	Properties						
Grid Property Name Default Value Unit Date A CTNUM 1.0 - 1986/06/11 D PPNUM 1.0 - 1986/06/11 D DPNUM 1.0 - 1986/06/11 D DYNUM 1.0 - 1986/06/11 D DYNUM 1.0 - 1986/06/11 E QLNUM 1.0 - 1986/06/11 FIPNUM 1.0 - 1986/06/11 RGR - 1986/06/11 KRGR - 1986/06/11 KROR - 1986/06/11 KROR - 1986/06/11 KROR - 1986/06/11 KROR - 1986/06/11 KRWR - 1986/06/11 LY m 1986/06/11 MULTNUM 1.0 - 1986/06/11 MULTNUM 1.0 - 1986/06/11 MULTNUM 1.0 - 1986/06/11 PBUB Bar 1986/06/11	Non-	Scheduable Arrays						
□ ACTNUM 1.0 - 1986/06/11 □ DPNUM 1.0 - 1986/06/11 □ DZMTRAV m 1986/06/11 □ EQLNUM 1.0 - 1986/06/11 □ EQLNUM 1.0 - 1986/06/11 □ FIPNUM 1.0 - 1986/06/11 □ RRGR - 1986/06/11 □ KRGR - 1986/06/11 □ KRORG - 1986/06/11 □ KRWR - 1986/06/11 □ LX m 1986/06/11 □ LY m 1986/06/11 □ LY m 1986/06/11 □ MULTNUM 1.0 - 1986/06/11 <t< th=""><th></th><th>Grid Property Name</th><th>Default Value</th><th>Unit</th><th></th><th>Dat</th><th>te</th><th>-</th></t<>		Grid Property Name	Default Value	Unit		Dat	te	-
DPNUM 1.0 - 1986/06/11 DZMTRXV m 1986/06/11 ENDNUM 1.0 - 1986/06/11 ENDNUM 1.0 - 1986/06/11 FQLNUM 1.0 - 1986/06/11 FNUM 1.0 - 1986/06/11 FNUM 1.0 - 1986/06/11 KRG - 1986/06/11 KRG - 1986/06/11 KRO - 1986/06/11 KROR - 1986/06/11 KROR - 1986/06/11 KROR - 1986/06/11 KRW - 1986/06/11 KRWR - 1986/06/11 LX m 1986/06/11 MULTNUM 1.0 - 1986/06/11 MULTV 1.0 - 1986/06/11 PGG Bar 1986/06/11 - PGUB Bar 1986/06/11 - MULTX - 198		ACTNUM	1.0	-		198	6/06/11	-
D ZMTRXV m 1986/06/11 E RUNUM 1.0 - 1986/06/11 E QUNUM 1.0 - 1986/06/11 FIPNUM 1.0 - 1986/06/11 IMBNUM 1.0 - 1986/06/11 IMBNUM 1.0 - 1986/06/11 KRG - 1986/06/11 KRGR - 1986/06/11 KROR - 1986/06/11 KROR - 1986/06/11 KROR - 1986/06/11 KROR - 1986/06/11 KRWR - 1986/06/11 LX m 1986/06/11 LY m 1986/06/11 MUTPV 1.58987E-07 m³ 1986/06/11 MULTPV 1.0 - 1986/06/11 MULTPV 1.0 - 1986/06/11 PG Bar 1986/06/11 - PCW Bar 1986/06/11 - MULTX -		DPNUM	1.0	-		198	6/06/11	
□ ENDNUM 1.0 - 1986/06/11 □ EQLNUM 1.0 - 1986/06/11 □ FIPNUM 1.0 - 1986/06/11 □ FIPNUM 1.0 - 1986/06/11 □ INBNUM 1.0 - 1986/06/11 □ KRG - 1986/06/11 □ KRGR - 1986/06/11 □ KROR - 1986/06/11 □ KROR - 1986/06/11 □ KROR - 1986/06/11 □ KRW - 1986/06/11 □ LX m 1986/06/11 □ LX m 1986/06/11 □ LY m 1986/06/11 □ LY m 1986/06/11 □ LY m 1986/06/11 □ NULTNUM 1.0 - 1986/06/11 □ NULTNUM 1.0 -		DZMTRXV		m		198	6/06/11	
□ EQNNM 1.0 - 1986/06/11 □ FIPNUM 1.0 - 1986/06/11 □ IMBNUM 1.0 - 1986/06/11 □ IMBNUM 1.0 - 1986/06/11 □ KRG - 1986/06/11 □ KRGR - 1986/06/11 □ KROR - 1986/06/11 □ KROR - 1986/06/11 □ KROR - 1986/06/11 □ KROR - 1986/06/11 □ KRW - 1986/06/11 □ LY m 1986/06/11 □ LY m 1986/06/11 □ LY m 1986/06/11 □ LY m 1986/06/11 □ NUTNV 1.0 - 1986/06/11 □ MULTPV 1.0 - 1986/06/11 □ PCG Bar 1986/06/11		ENDNUM	1.0	-		198	6/06/11	
□ FIPNUM 1.0 - 1986/06/11 □ □ IMBNUM 1.0 - 1986/06/11 □ □ KRG - 1986/06/11 □ 1986/06/11 □ KRG - 1986/06/11 □ □ KROR - 1986/06/11 □ KROR - 1986/06/11 □ KROR - 1986/06/11 □ KRW - 1986/06/11 □ LX m 1986/06/11 □ LY m 1986/06/11 □ LY m 1986/06/11 □ LY m 1986/06/11 □ LY m 1986/06/11 □ NUTNU 1.0 - 1986/06/11 □ MULTPU 1.0 - 1986/06/11 □ PCG Bar 1986/06/11 ■ □ MULTX - 1986/06/11 ■		EQLNUM	1.0	-		198	6/06/11	
IMBNUM 1.0 - 1986/06/11 KRG - 1986/06/11 KRGR - 1986/06/11 KROR - 1986/06/11 KRORG - 1986/06/11 KRORG - 1986/06/11 KRORG - 1986/06/11 KRW - 1986/06/11 KRW - 1986/06/11 LX m 1986/06/11 LY m 1986/06/11 UZ 58987E-07 m³ 1986/06/11 MULTNUM 1.0 - 1986/06/11 MULTNUM 1.0 - 1986/06/11 PCG Bar 1986/06/11 PCW Bar 1986/06/11 MULTX - 1986/06/11 MULTX - 1986/06/11 MULTX- - 1986/06/11 MULTY- - 1986/06/11 MULTY- - 1986/06/11 MULTY- - 1986/06/11		FIPNUM	1.0	-		198	6/06/11	=
KRG - 1986/06/11 KRGR - 1986/06/11 KROR - 1986/06/11 KRORG - 1986/06/11 KRORG - 1986/06/11 KRORG - 1986/06/11 KRORW - 1986/06/11 KRW - 1986/06/11 LX m 1986/06/11 LY m 1986/06/11 LY m 1986/06/11 MUTNUM 1.0897E-07 m³ 1986/06/11 MULTPV 1.0 - 1986/06/11 ORLPY 1.0 - 1986/06/11 PEG Bar 1986/06/11 P MULTA - 1986/06/11 * MULTA - 1986/06/11 * MULTY - 1986/06/11 * MULTY - 1986/06/11 * MULTY - 1986/06/11 * MULTY - 1986/06/11		IMBNUM	1.0	-		198	6/06/11	
KRGR - 1986/06/11 KROR - 1986/06/11 KRORG - 1986/06/11 KRORW - 1986/06/11 KRORW - 1986/06/11 KRW - 1986/06/11 KRWR - 1986/06/11 LX m 1986/06/11 LY m 1986/06/11 LY m 1986/06/11 MUIPV 1.58987E-07 m ³ 1986/06/11 MULTNUM 1.0 - 1986/06/11 MULTPV 1.0 - 1986/06/11 PGG Bar 1986/06/11 1986/06/11 PCG Bar 1986/06/11 * MULTX- - 1986/06/11 * MULTX- - 1986/06/11 * MULTX- - 1986/06/11 * MULTY- - 1986/06/11 * MULTY- - 1986/06/11 * MULTY- -		KRG		-		198	6/06/11	
KRO - 1986/06/11 KRORG - 1986/06/11 KRORW - 1986/06/11 KRW - 1986/06/11 KRWR - 1986/06/11 LX m 1986/06/11 LY m 1986/06/11 UY m 1986/06/11 MULTNUM 1.0 - 1986/06/11 MULTNUM 1.0 - 1986/06/11 MULTNUM 1.0 - 1986/06/11 PUB Bar 1986/06/11 1986/06/11 PCG Bar 1986/06/11 1 MULTX - 1986/06/11 1 MULTX - 1986/06/11 1 MULTY - 1986/06/11 1 MULTY </td <td></td> <td>KRGR</td> <td></td> <td>-</td> <td></td> <td>198</td> <td>6/06/11</td> <td></td>		KRGR		-		198	6/06/11	
KRORG - 1986/06/11 KRORW - 1986/06/11 KRW - 1986/06/11 KRW - 1986/06/11 LX m 1986/06/11 LY m 1986/06/11 LY m 1986/06/11 LY m 1986/06/11 MUTY 1.58987E-07 m³ 1986/06/11 MULTNUM 1.0 - 1986/06/11 OILAPI - 1986/06/11 1986/06/11 PBUB Bar 1986/06/11 1986/06/11 PCW Bar 1986/06/11 - MULTX - 1986/06/11 - MULTA - 1986/06/11 - MULTA - 1986/06/11 - MULTY - 1986/06/11 - MULTY - 1986/06/11 - MULTZ - 1986/06/11 - MULTZ - 1986/06/11 -		KRO		-		198	6/06/11	
KRORW - 1986/06/11 KRW - 1986/06/11 LX m 1986/06/11 LX m 1986/06/11 LY m 1986/06/11 LY m 1986/06/11 MULTVV 1.58987E-07 m³ 1986/06/11 MULTVV 1.58987E-07 m³ 1986/06/11 MULTVV 1.0 - 1986/06/11 MULTVV 1.0 - 1986/06/11 PUB Bar 1986/06/11 PCG Bar 1986/06/11 MULTX - 1986/06/11 MULTX - 1986/06/11 MULTX- - 1986/06/11 MULTX- - 1986/06/11 MULTY - 1986/06/11 MULTY- - 1986/06/11 </td <td></td> <td>KRORG</td> <td></td> <td>-</td> <td></td> <td>198</td> <td>6/06/11</td> <td>L</td>		KRORG		-		198	6/06/11	L
KRW - 1986/06/11 KRWR - 1986/06/11 LX m 1986/06/11 LY m 1986/06/11 LY m 1986/06/11 MUTYV 1.58967E-07 m³ 1986/06/11 MULTNUM 1.0 - 1986/06/11 MULTNUM 1.0 - 1986/06/11 OILAPI - 1986/06/11 1986/06/11 PGB Bar 1986/06/11 * PCW Bar 1986/06/11 * MULTX - 1986/06/11 * MULTX - 1986/06/11 * MULTY - 1986/06/11 * MULTZ - 1986/06/11 * MULTZ - 1986/0		KRORW		-		198	6/06/11	
KRVR - 1986/06/11 LX m 1986/06/11 LY m 1986/06/11 LY m 1986/06/11 LZ m 1986/06/11 MULTVV 1.58967E-07 m ³ 1986/06/11 MULTNUM 1.0 - 1986/06/11 NTG 1.0 - 1986/06/11 OLAPI - 1986/06/11 PGG Bar 1986/06/11 PCW Bar 1986/06/11 MULTX - 1986/06/11 MULTX - 1986/06/11 MULTX - 1986/06/11 MULTY - 1986/06/11 MULTY - 1986/06/11 MULTY - 1986/06/11 MULTZ - 1986/06/11 MULTZ - 1986/06/11		KRW		-		198	6/06/11	
LX m 1986/06/11 LY m 1986/06/11 LZ m 1986/06/11 MULTVW 1.58987E-07 m³ 1986/06/11 MULTNUM 1.0 - 1986/06/11 MULTPV 1.0 - 1986/06/11 OILAPI - 1986/06/11 1986/06/11 PEUB Bar 1986/06/11 1 PCW Bar 1986/06/11 1 MULTX - 1986/06/11 1 MULTX - 1986/06/11 1 MULTX - 1986/06/11 1 MULTY - 1986/06/11 1 MULTY<		KRWR		-		198	6/06/11	
LY m 1986/06/11 LZ m 1986/06/11 MINPVV 1.58987E-07 m³ 1986/06/11 MULTNUM 1.0 - 1986/06/11 MULTPV 1.0 - 1986/06/11 OILAPI - 1986/06/11 1986/06/11 PSUB Bar 1986/06/11 1986/06/11 PCW Bar 1986/06/11 • Cheduable Arrays - 1986/06/11 • MULTX - 1986/06/11 • MULTX - 1986/06/11 • MULTY - 1986/06/11 •<		LX		m		198	6/06/11	
LZ m 1986/06/11 MINPVV 158867E-07 m³ 1986/06/11 MULTNUM 1.0 - 1986/06/11 MULTPV 1.0 - 1986/06/11 OILAPI - 1986/06/11 PGG Bar 1986/06/11 PCW Bar 1986/06/11 MULTX - 1986/06/11 MULTX - 1986/06/11 MULTX - 1986/06/11 MULTX - 1986/06/11 MULTY - 1986/06/11 MULTY - 1986/06/11 MULTY - 1986/06/11 MULTZ - 1986/06/11 MULTZ - 1986/06/11		LY		m		198	6/06/11	
MINPVV 1.58987E-07 m ⁴ 1986/06/11 MULTNUM 1.0 - 1986/06/11 MULTNV 1.0 - 1986/06/11 NTG 1.0 - 1986/06/11 OILAPI - 1986/06/11 - PBUB Bar 1986/06/11 - PCG Bar 1986/06/11 - Cheduable Arrays - 1986/06/11 + MULTX - 1986/06/11 + MULTX- - 1986/06/11 + MULTY - 1986/06/11 + MULTX- - 1986/06/11 + MULTY - 1986/06/11 + MULTY - 1986/06/11 + MULTZ - 1986/06/11 +		LZ		m		198	6/06/11	
MULTNUM 1.0 - 1986/06/11 MULTPV 1.0 - 1986/06/11 NTG 1.0 - 1986/06/11 OILAPI - 1986/06/11 PBUB Bar 1986/06/11 PCC Bar 1986/06/11 PCW Bar 1986/06/11 Cheduable Arrays - 1986/06/11 MULTX - 1986/06/11 MULTY - 1986/06/11 MULTZ - 1986/06/11		MINPVV	1.58987E-07	m³		198	6/06/11	
MULTPV 1.0 - 1986/06/11 NTG 1.0 - 1986/06/11 OILAPI - 1986/06/11 PBUB Bar 1986/06/11 PCG Bar 1986/06/11 PCW Bar 1986/06/11 MULTX - 1986/06/11 MULTX - 1986/06/11 MULTX - 1986/06/11 MULTX - 1986/06/11 MULTY - 1986/06/11 MULTZ - 1986/06/11 MULTZ - 1986/06/11		MULTNUM	1.0	-		198	6/06/11	
INTG 1.0 - 1986/06/11 OILAPI - 1986/06/11 PBUB Bar 1986/06/11 PCG Bar 1986/06/11 PCW Bar 1986/06/11 MULTX - 1986/06/11 MULTX - 1986/06/11 MULTY - 1986/06/11 MULTY - 1986/06/11 MULTZ - 1986/06/11 MULTZ - 1986/06/11 MULTZ - 1986/06/11		MULTPV	1.0	-		198	6/06/11	
OILAPI - 1986/06/11 PBUB Bar 1986/06/11 PCG Bar 1986/06/11 PCW Bar 1986/06/11 PCW Bar 1986/06/11 of of Property Name Default Value Unit Dat MULTX- - 1986/06/11 + MULTY- - 1986/06/11 + MULTZ - 1986/06/11 + MULTZ- - 1986/06/11 +		NTG	1.0	-		198	6/06/11	
PBUB Bar 1986/06/11 PCG Bar 1986/06/11 PCW Bar 1986/06/11 Cheduable Arrays		OILAPI		-		198	6/06/11	
PCG Bar 1966/06/11 PCW Bar 1986/06/11 MULTX - 1986/06/11 MULTX - 1986/06/11 MULTX - 1986/06/11 MULTX - 1986/06/11 MULTY - 1986/06/11 MULTY - 1986/06/11 MULTY - 1986/06/11 MULTZ - 1986/06/11 MULTZ - 1986/06/11		PBUB		Bar		198	6/06/11	
PCW Bar 1986/06/11 cheduable Arrays Grid Property Name Default Value Unit Date MULTX - 1986/06/11 - MULTY - 1986/06/11 - MULTY - 1986/06/11 - MULTY - 1986/06/11 - MULTZ - 1986/06/11 - MULTZ - 1986/06/11 -		PCG		Bar		198	6/06/11	
MULTY- Default Value Unit Date MULTY- - 1986/06/11 - MULTZ - 1986/06/11 -		PCW		Bar		198	6/06/11	
Grind Property Name Default Value Unit Date MULTX - 1986/06/11 - MULTY - 1986/06/11 - MULTZ - 1986/06/11 -	cheo	luable Arrays	1	1	1-		1	
MULTX- - 1986/06/11 MULTX- - 1986/06/11 MULTY- - 1986/06/11 MULTY- - 1986/06/11 MULTZ - 1986/06/11 MULTZ - 1986/06/11 MULTZ - 1986/06/11	-	Grid Property Name	Default Value	Unit	Date 1000 (00 (11			
MULTY - 1986/06/11 ▼ MULTY - 1986/06/11 ▼ MULTY - 1986/06/11 ▼ MULTZ - 1986/06/11 ▼	Ц.	MULTX		-	1980/00/11		*	
MULTY- - 1986/06/11 ▼ MULTZ - 1986/06/11 ▼ MULTZ - 1986/06/11 ▼	片	MULTX-		-	1900/00/11		•	
MULTY - 1986/06/11 ▼ MULTZ - 1986/06/11 ▼ MULTZ - 1986/06/11 ▼	片	NULTY		-	1900/00/11		-	
MULTZ 1966/06/11 +	님	MULTY-		-	1980/00/11			
- 1900/00/11 *	님	MULIZ		-	1960/00/11			
	ш	MUL12-		-	1900/00/11		•	

Figure 75- Add Properties Window

Set Defaults:

In addition to add properties action, assigning of the default values to grid properties facility is also available in "Set Default" value button.

Import Data:

Always there are only maps of the grid properties are available, so for importing these maps a facility of "Import Data" has been provided to import required grid properties. The Import Data window has been shown in Figure 76. Note to the file and project units in case of importing data.

💐 Import Eclipse Grid Properties								
Import Ec	lipse Grid Properties							
File Path:	E:\Office\ESTD\Projects\small\NAZ_E05_E100.DATA							
File Unit:	FIELD 👻							
	Cancel OK							

Figure 76- Import Grid Properties Window

Create Custom Property:

User can define own custom grid property, using "Custom Grid Property" dialog (Figure 77). The property name, template and value in the selected unit must be entered in this dialog. After defining the custom grid property, it is added to the grid property dialog.

2 Custom Grid Property	
Custom Grid Property	
Property Name: Property Template: Default Value:	●
Metric (ECLIPSE [™]) ▼ 0.00	Cancel OK

Figure 77 Create Custom Property Dialog

3-1-5- Fault Manager

The "Fault Manager" is used for defining fault and its segments. It leads user to the Figure 78 which has two columns of "fault name" and its "segments".

For adding new fault the **+** button of "fault name" column is used (for removing exist faults - is used). Multiple selection and remove options are available using Ctrl+Click. After adding a fault using **+** from first column, we can add segments in the second column in same way. In the segment column, the face direction and fault zone must be specified (Figure 79).

💐 Fault Manager		
Fault Manager		
+ - ab	+ — ab	Fault Parameters:
Fault Name 7 4 4 4 4	Segments	
	Threshold Pressure	
	Has Threshold Pressure	
	Threshold Pressure:	0.0 psi
Field • 0.00		Import Eclipse Fault Data Cancel OK

Figure 78- Define Fault

Fault Manager									
ault Manager									
+ — ab		+ - ab	Fault Parame	ters:					
Fault Name	*****	Segments	Name	Value	U	nit			
1 New Fault	Ŧ	1 New Segment	Lower I	2	-				
The with duit	- 	1 Hew beginent	Upper I	4	-				
	÷		Lower J	4	-				
	Ł		Upper J	7	-				
			Lower K	*	-				
			Upper K	4	-				
			Fault Face	Х	-				
	_								
	ſ	Threshold Pressure							
		Has Threshold Pressure							
		Has Threshold Pressure							
		Threshold Pressure:	10	0	psi				
ield • 0.0	0			Im	nport Eclips	se Fault Data	Can	cel	ОК
			Figure 79	- Fault Prop	perties				

It should be noted that in all of the RETINA windows, the yellow fields indicate default values for that field. There is a button of ab in the Fault Manager window, which is used to auto naming of the defined Faults. Assume you want to auto name 4 faults which you defined before, clicking on ab will change the names of faults to "Fault 1" to Fault 4". If you want to rename a specific Fault you can double click on it and type the name.

The navigating arrows are used to move a selected fault up or down.

If your created model includes threshold pressure, the related check box of "Has Threshold Pressure" must be checked; the value of this pressure also must be entered. If you load an Eclipse data file in which threshold pressure exists, this checkbox will be checked automatically.

3-1-6- Dual Option

This button is activated only in case of dual (fractured) models. In this window following options are available for user (Figure 80).

- Fracture model: which can be one of Dual Porosity or Dual Permeability
- Shape Factor Formulation: it can be selected one of the following formulation for shape factor:
 - o Eclipse formulation
 - Warren and Root (1963)
 - o Kazemi et al. (1976)
 - o Gilman and Kazemi (1983)
 - o Coats (1989)
 - o Quandalle and Sabathier (1989)
 - o Lim and Aziz (1995)
 - o None
- Gravity Drainage and Imbibition: it can be selected one of the following formulation in:
 - GRAVDR (Sonier et al. (1986))
 - o GRAVDRM (Quandalle and Sabathier (1989))
 - o None
- **Gravity Drainage Re-infiltration:** it is activated if GRAVDRM is selected for gravity drainage and imbibition.

- L to Sigma Calculations: all L to Sigma calculation values is required just in case of Eclipse formulation for shape factor.
- Dual Porosity Permeability Multiplier: it can be checked if needed in model.

💐 Dual Options		_		x
Dual Options				P
Dual Simulation Options:				
Name	Value		Unit	
Fracture Model	Dual Porosity	-	-	
Shape Factor Formulation	None	Ŧ	-	
Gravity Drainage and Imbibition	None	Ŧ	-	
Gravity Drainage Reinfiltration	1		-	
L to Sigma Calculation Fx	4.0		-	
L to Sigma Calculation Fy	4.0		-	
L to Sigma Calculation Fz	4.0		-	
L to Sigma Calculation Fgd	0.0		-	
L to Sigma Calculation Transmissibility	XONLY	Ŧ	-	
Dual Porosity Permeability Multiplier	V		-	
				_
Field	Cancel		ОК	

Figure 80- Dual Options

3-1-7- Face Manager

The face manager dialog shows properties of the faces between two grid block. The face id, Cv id1 (first grid block id), Cv id2 (second grid block id), I1,J1,K1 (I,J,K indices of the first grid block), I2,J2,K2 (I,J,K indices of the second grid block), cross section area between two block, NNC Type (non-neighbor connection type), normal vector of face, Permeability direction, Transmissibility and rock region values of the face is displayed in face manager dialog. Face manager has been displayed in Figure 81.

User can use the provided facilities (in the right side of the dialog) to hide some columns, make filters and find the desired parameter. For example user can uncheck the columns which are not necessary for his/her specific purpose (Figure 82).

Adding and removing face filters can be applied using "Filters" expandable item by + and -, respectively. User can find matched values for each parameter by typing the value and selecting the parameter in the "Find" expandable field. The Figure 83 displays the use of Find and Filter.

🔍 Face	e Manager															
Face I	Manager															
	Face Id	Cv Id 1	Cv Id 2	11	J1	K1	12	J2	K2	Area	NNC Type	Normal Vector	Perm. Direction	Transmissibility	Rock Region	Visible Columns
Unit	-	-	-	-	-	-	-	-	-	m²	-	-	-	cP-m³/day-bars	-	Visible Columnis
1	1	12	1236	12	1	1	12	1	2	115670	NONE	-0.0248314, 0.049341, 0.998473	K+	878.747	0	Filters ¥
2	2	12	46	12	1	1	12	2	1	6523.82	NONE	0.390032, 0.920801, -0.0	J+	252.233	0	Find
3	3	45	1269	11	2	1	11	2	2	115272	NONE	0.00436334, 0.0456496, 0.998948	K+	249.83	0	
4	4	45	79	11	2	1	11	3	1	6105.61	NONE	0.388324, 0.921523, -0.0	J+	5.79077	0	
5	5	45	46	11	2	1	12	2	1	6108.11	NONE	0.916313, -0.400463, 0.0	I+	10.5857	0	
6	6	46	1270	12	2	1	12	2	2	115818	NONE	-0.0315224, 0.0644895, 0.99742	K+	12377.0	0	
7	7	46	80	12	2	1	12	3	1	6334.96	NONE	0.38761, 0.921823, -0.0	J+	24.7857	0	
8	8	46	47	12	2	1	13	2	1	6278.4	NONE	0.91667, -0.399645, 0.0	I+	252.536	0	
9	9	47	1271	13	2	1	13	2	2	116273	NONE	-0.039288, 0.071032, 0.9967	K+	25533.8	0	
10	10	47	81	13	2	1	13	3	1	6492.98	NONE	0.387373, 0.921923, -0.0	J+	389.593	0	
11	11	47	48	13	2	1	14	2	1	6418.15	NONE	0.916991, -0.398908, 0.0	I+	760.938	0	
12	12	48	1272	14	2	1	14	2	2	116542	NONE	-0.030133, 0.0642526, 0.997479	K+	21462.6	0	
13	13	48	82	14	2	1	14	3	1	6624.15	NONE	0.3875, 0.92187, -0.0	J+	317.023	0	
14	14	48	49	14	2	1	15	2	1	6540.64	NONE	0.917255, -0.398301, 0.0	I+	775.729	0	
15	15	49	1273	15	2	1	15	2	2	116822	NONE	-0.0240149, 0.0584516, 0.998001	K+	24843.6	0	
16	16	49	83	15	2	1	15	3	1	6736.96	NONE	0.387941, 0.921684, -0.0	J+	836.422	0	
17	17	79	1303	11	3	1	11	3	2	115516	NONE	0.0048429, 0.0782382, 0.996923	K+	267.821	0	
18	18	79	113	11	3	1	11	4	1	5912.44	NONE	0.385702, 0.922623, -0.0	J+	6.10141	0	
19	19	79	80	11	3	1	12	3	1	5928.21	NONE	0.916483, -0.400073, 0.0	I+	10.2117	0	
20	20	80	1304	12	3	1	12	3	2	115916	NONE	-0.0347307, 0.0718206, 0.996813	K+	438.374	0	
21	21	80	114	12	3	1	12	4	1	6152.06	NONE	0.385061, 0.922891, -0.0	J+	8.38497	0	
22	22	80	81	12	3	1	13	3	1	6125.73	NONE	0.916927, -0.399055, 0.0	I+	104.112	0	
23	23	81	1305	13	3	1	13	3	2	116294	NONE	-0.0444055, 0.0640228, 0.99696	K+	3283.39	0	
24	24	81	115	13	3	1	13	4	1	6332.49	NONE	0.384958, 0.922934, -0.0	J+	38.0261	0	
25	25	81	82	13	3	1	14	3	1	6281.42	NONE	0.917354, -0.398072, 0.0	I+	217.823	0	
											1 of	646				
Metr	ic (ECLIPSE	^{7M}) ▼	0.00													Cancel

Figure 81 Face Manager Dialog

ace N	ace Manager											
	11	Л	К1	12	J2	K2	NNC Type	A Virible Column				
Unit	-	-	-	-	-	-	-	Visible Columns	×			
1	12	1	1	12	1	2	NONE	Face Id				
2	12	1	1	12	2	1	NONE					
3	11	2	1	11	2	2	NONE	CV Id 2				
4	11	2	1	11	3	1	NONE					
5	11	2	1	12	2	1	NONE					
6	12	2	1	12	2	2	NONE					
7	12	2	1	12	3	1	NONE					
8	12	2	1	13	2	1	NONE					
9	13	2	1	13	2	2	NONE					
10	13	2	1	13	3	1	NONE					
11	13	2	1	14	2	1	NONE					
12	14	2	1	14	2	2	NONE	Perm Direction				
13	14	2	1	14	3	1	NONE					
14	14	2	1	15	2	1	NONE	Rock Region				
15	15	2	1	15	2	2	NONE		_			
16	15	2	1	15	3	1	NONE	Filters	*			
17	11	3	1	11	3	2	NONE	Find				
18	11	3	1	11	4	1	NONE					
10		2	2		2	2	10015					
						1	of 646					
Metri	ic (EC	LIPSE										

Figure 82 Editing Visibility of Columns in Face Manger

Figure 83 Find and Filter Action on Face Manager

3-1-8- Script Calculator

Property calculator window is used for defining a formula for editing values of some grid or face properties. Face calculator and property calculator dialogs have been displayed in Figure 84 and 85, respectively. Only transmissibility values allowed editing in the face calculator; since all action in the face calculator and property calculator are same we explain property calculator; it is obvious that all explanation are applicable in face calculator, also.

If the project perspective is on the "Simulation Perspective" both face calculator and property calculator (Prop. Calculator) radio buttons are active and user can select each of them; in this perspective all the grid properties except PORV, are read-only. Note that custom property is editable for both perspectives. If the project perspective is on the "Preprocess Perspective" the face calculator will be disabled and PORV will be removed form grid properties; the PORV will be calculated again and displayed in the grid property list if perspective is switched to the Simulation.

For the starting with the script calculator user should type the script name which is optional; in case of blank script name, the first line of script is set to that. In the second step the execution unit must be selected; the project unit is select for this filed, by default.

Script Calculator						
Script Calculator						+ × = -
Script Declaration:					Calculator Type:	
Script Name (Optional):				Face Calculator		
Execution Unit System:	Field			•	History	×
Script:				_	Face Filters	*
				^	Face Properties	*
					TRANSMISSIBILITY	
4				Ψ 		
Comment (Optional):						
				* *		
min max In	log10	abs	Execute			
() E	+	*	Params 🔹			
7 8 9	-		Functions •			
4 5 6	√x	X ²	Trigonomics •			
	³ √x		Conditions •			
	=	X _Å	; Clear			
						Close

Figure 84- Face Calculator Dialog

🔍 Scrip	t Calcula	itor								x		
Script	Calculat	tor							+	×		
									=			
Script D	eclaratio	n:					Calculator Type:					
Script Name (Optional): O Face Calculator O Prop. Calculator												
Executio	on Unit S	ystem:	Field]	History		¥	-		
Script: Grid Filters ¥												
							Grid Properties		*			
							DZMTRXV*	1988/01/01 👻	쇼 —			
							FIPNUM*	1988/01/01 👻	쇼 —			
							MULTNUM*	1988/01/01 👻	쇼 —			
							MULTPV*	1988/01/01 👻	쇼 -			
						-	PERMX* 1988/01/01					
•						Þ	PERMY*	1988/01/01 👻	쇼 —			
Comme	nt (Optio	onal):					PERMZ*	1988/01/01 👻	公 —			
						*	PORO*	1988/01/01 👻	쇼 -			
min	max	In	log10	abs	Execute		PORV	1988/01/01 👻	쇼 -			
		E	+	*	Params •		SATNUM*	1988/01/01 👻	쇼 —			
	8	9			Functions •		SIGMAV*	1988/01/01 👻	쇼 —			
4	5	6	√x	x ²	Trigonomics •		*Read-only grid property	(Not editable in curre	ent perspectiv			
1	2	3	³ √x	X ³	Conditions •		Loaded Grid Results		×			
0	•	U	=	X ^y	; Clear		Create Custom Property		×	-		
									Class			
									Close			

Figure 85 Property Calculator Dialog

In the third step, user can start the writing script in java format, and assign some formula and values to the properties in the property calculator (or transmissibility values in face calculator). User can type code or use the provided buttons, params, Functions, Trigonomics, and Conditions for entering the code to the script. There is also a comment field which user can fill it optionally. After writing code the "Execute" button will apply the code to the model and changes are not irreversible, after execution.

Note: do not forget entering ";" at the end of script statements

The "Params" dropdown button includes I, J, and K indices parameters.

The "Functions" dropdown button includes following functions:

- 1- If
- 2- Volume
- 3- Index
- 4- Dimension
- 5- Coordinate
- 6- Result
- 7- Property
- 8- DistanceToWell
- 9- WellConnection
- 10-AllWellConnection

The "Trigonomics" dropdown button includes following trigonomic functions:

1-	sin	9- sinh	17- sec
2-	COS	10- cosh	18- csc
3-	tan	11- tanh	19- asec
4-	cot	12- coth	20- acsc
5-	asin	13- asinh	21-sech
6-	acos	14- acosh	22- csch
7-	atan	15- atanh	23- asech
8-	acot	16- acoth	24- acsch

The "Conditions" dropdown button includes following functions:

1-	if	
2-	else	9- != (not equal)
3-	elseif	10- for
4-	< (less than)	11- while
5-	<= (less or equal than)	12- do while
6-	== (equal to)	13- and
7-	>= (greater or equal than)	14- or

8- >(greater than)

After executing some scripts you can access to the defined scripts in the "History" section in the right side of the script calculator dialog.

User can apply script to some filters using "Grid Filters" section which is displayed in the Figure 86.

Script Calculator		
cript Calculator		+ × = -
ript Declaration:	Calculator Type:	
ript Name (Optional):	◯ Fa	ce Calculator 💿 Prop. Calculator
ecution Unit System: Metric (ECLIPSE™)	·	
ript:	History	*
	Grid Filters	*
	k⊉ k⊡ ₃b ₃b	
	Grid Properties	*
	MULTZ*	2005/01/01 -
	MULTZ*	2005/01/01 - <u>↓</u> - 2005/01/01 - <u>↓</u> -
	MULTZ* PERMX* PERMY*	2005/01/01 ▼ ① 2005/01/01 ▼ ① 2005/01/01 ▼ ①
omment (Optional):	MULTZ* PERMX* PERMY* PERMZ*	2005/01/01 ▼ ⊥ − 2005/01/01 ▼ ⊥ − 2005/01/01 ▼ ⊥ − 2005/01/01 ▼ ⊥ −
omment (Optional):	MULTZ* PERMX* PERMY* PERMZ* PORO*	2005/01/01 ▼ ↓ − 2005/01/01 ▼ ↓ − 2005/01/01 ▼ ↓ − 2005/01/01 ▼ ↓ − 2005/01/01 ▼ ↓ −
omment (Optional): min max In log10 abs Execute	MULTZ* PERMX* PERMY* PERMZ* PORO* PORV	2005/01/01 ▼
omment (Optional): min max In log10 abs Execute () E + * Params *	MULTZ* PERMX* PERMY* PERMZ* PORO* PORV *Read-only grid pro	2005/01/01 ▼ ↓ − 2005/01/01 ▼ ↓ − 2005/01/01 ▼ ↓ − 2005/01/01 ▼ ↓ − 2005/01/01 ▼ ↓ − 2005/01/01 ▼ ↓ − 2005/01/01 ▼ ↓ − 2005/01/01 ▼ ↓ − 2005/01/01 ▼ ↓ − 2005/01/01 ▼ ↓ − 2005/01/01 ▼ ↓ −
omment (Optional): min max In log10 abs Execute () E + * Params * 7 8 9 - / Functions *	 MULTZ* PERMX* PERMY* PERMZ* PORO* PORV *Read-only grid pro Loaded Grid Result 	2005/01/01 - - 2005/01/01 -
min max In log10 abs Execute () E + * Params * 7 8 9 - / Functions * 4 5 6 \sqrt{x} X² Trigonomics *	 MULTZ* PERMX* PERMY* PERMZ* PORO* PORV *Read-only grid pro Loaded Grid Result 	2005/01/01 - - 2005/01/01 -
minmaxInlog10absExecute()E+*Params *789-/Functions *456 \sqrt{x} x^2 Trigonomics *123 $^2\sqrt{x}$ x^3 Conditions *	 MULTZ* PERMX* PERMY* PERMZ* PORO* PORV *Read-only grid pro Loaded Grid Result Create Custom Pro 	2005/01/01 - - - 2005/01/01 - - - <t< td=""></t<>

Figure 86 Grid Filters section of Script Calculator

If user defined some filters using left panel of the RETINA main page, the filters will be observable in the Grid Filters section of the script calculator (Figure 87). User can select all, deselect all, or select some desired filters; calculation will be applied on selected filters. In case of no filter, calculations will be applied on all grids. User can apply filters to view or get them from view using two distinct buttons in the Grid Filters section.

There is section of grid properties in the script calculator in which all defined schedulable and non-schedulable grid properties of the model are displayed. These properties are

editable only in pre-process perspective, except PORV. The '*' sign indicates the readonly properties. There is a date combo box in front of each grid property which indicates the define date of each grid property. User can remove each property using "-", or put it into the script using inert button.

3	Scrip	t Calcula	ator						x
S	cript	Calcula	tor						+ × = -
s	cript D	eclaratio	n:					Calculator Type:	
s	cript N	lame (Op	tional):				_	Face Calculator Prop. Calculator	
E	xecutio	on Unit S	ystem:	Metric	(ECLIPS	™)	-	0	_
s	cript:		-					History	×
							*	Grid Filters	*
8								☑ □ 3D 3D □ Filter1 □ Filter2	
								Grid Properties	*
								MULTZ* 2005/01/01 - J	_
							-	PERMX* 2005/01/01 -	-
	•						Þ	PERMY* 2005/01/01 -	-
C	comme	ent (Opti	onal):					PERMZ* 2005/01/01 -	-
							÷	PORO* 2005/01/01 -	-
	min	max	In	log10	abs	Execute		PORV 2005/01/01 -	-
	()	E	+	*	Params 🔹		*Read-only grid property (Not editable in current perspec	tive).
	7	8	9] -]	/	Functions •		Loaded Grid Results	×
	4	5	6	∫√x	x ²	Trigonomics •		Consta Custom Presents	×
	1	2	3]_³√x	X³	Conditions 🔹		create custom property	*
	0		U	=	X ^y	; Clear		Functions Help	×
								Clos	se

Figure 87 3D View Filters in Script Calculator

If user requests some grid results (the request grid result action will be explained in the "Numerical and Result" data tab) the results can be observable in the "Loaded Grid Results". The loading action of the grid result must be done using "tab" Left panel of the RERINA main page (Figure 88) before performing any action on them.

Figure 88 Loading Grid Results

After loading the grid results using Figure 88 instructions, the imported results are displayed in the script calculator (Figure 89). There is a date combo box in front of each loaded grid property which indicates the existing date of each grid property. User can remove each property using "-", or put it into the script using inert button.

The facility of "create Custom Property" is available to user. User can define own custom grid property. The property name, template and value must be entered in the "Create Custom Property" section. After defining the custom grid property, it is added to both the grid property dialog, and script calculator.

Finally there is a "Functions Help" section in the property calculator, in which user can see the functions templates, in a quick view.

Using of "functions" or "conditions" in script calculator might be relatively complicated for the beginners; so here minimal examples for each function and conditions are presented. You can create more complicated scripts using this feature.

Script Calcul	ator								+ >
Script Declarat	ion:					Calculator Type:			
Script Name (C	optional):					() Face Calcula	stor 💿 Prop. Calculate	oir C	
Execution Unit	System:	Metric	(ECLIPS	E**)		History			~
cript						Citation			
					÷	Grid Filters			Ŷ
					1	Grid Properties			¥
						Loaded Grid Results			*
						BPR	2005/01/01	٣	∿
						BOSAT	2005/01/01	٣	岙
						BWSAT	2005/01/01	•	亞
						1 1 4 4 5 5 5 A 4		1000	
						BRS	2005/01/01	*	立
					-	BRS Create Custom Property	2005/01/01	*	± ₹
Comment (Op	tional):					BRS Create Custom Property Functions Help	2005/01/01	•	<u>む</u> *
< Comment (Op	tional):					BRS Create Custom Property Functions Help	2005/01/01	•	± ≈
< Comment (Op	tional):				-	BRS Create Custom Property Functions Help	2005/01/01	×	22 *
< Comment (Op min. max	tional):	log10	abs	Execute	9 4 4	BRS Create Custom Property Functions Help	2005/01/01	•	<u>4</u>
Comment (Op	tional):	log10	abs *	Execute Params *	1 4 9	BRS Create Custom Property Functions Help	2005/01/01		<u>4</u>
Comment (Op min max () 7 .8	tional):	log10 +	abs.	Execute Params * Functions *		BRS Create Custom Property Functions Help	2005/01/01		22 *
(Comment (Op min max () 7 8 4 5 1 2	tional): In E 9 6	log10 + - - 	abs * / x ²	Execute Params * Functions * Trigonomics *	1 × 1	BRS Create Custom Property Functions Help	2005/01/01		
<pre> Comment (Op min max () 7 8 4 5 1 2 0 </pre>	tional):	log10 + - - - - - - - - - - - - - - - - - -	abs + 	Execute Params * Functions * Trigonomics * Conditions *	1 () ()	BRS Create Custom Property Functions Help	2005/01/01		*

Figure 89 Loaded Grid Results in Script Calculator

Function Examples:

• Using "If" Function:

It has three inputs; the first input parameter is a logical expression, the second one is the value if the condition is true, and the third input parameter is the value if the condition is false.

Example:

```
If(PERMX>200,5,0);
```

```
If the value of x-permeability for any grid block is greater than 200, it will be replaced with value of 5, else it will be replaced with 0.
```

• Using "Volume" Function:

It has no input; it calculates the geometric volume of each grid block.

Example 1:

PERMX=Volume(;

The volume of each grid block is calculated and assigned to x-permeability of each grid.

Example 2:

A=Volume(); The volume of each grid block is calculated and assigned to the user defined property of "A" for each grid.

Example 3:

```
A= If(Volume>5000, 1000, 500);
The A property value will be 1000 for all grid blocks with grid geometric
volume greater than 5000; simultaneously, the value of 500 is assigned for
the other grid blocks.
```

• Using "Index" Function:

It has one input of the I, J, or K index as string in the "I", "J", or "K" format; it calculates the index of each grid block in desired direction. The "I", "J", and "K" parameters can be inserted either using "Params" dropdown list or by typing in the script as mentioned format.

Example 1:

```
PERMX= Index("J");
The index of "J" for each grid block is assigned to its x-permeability value.
Example 2:
PERMY=If(Index("J")==5, 2.5, 1.5);
The y-permeability value will be 2.5 for all grid blocks with J-index=5, and
the value of 1.5 is assigned for other grid blocks.
```

• Using "Dimension" Function:

It has one input of the I, J, or K index as string in the "I", "J", or "K" format; it calculates the dimension of each grid block in desired direction. The "I", "J", and "K" parameters can be inserted either using "Params" dropdown list or by typing in the script as mentioned format.

Example 1:

PERMX=Dimension("J"); The Dimension of grid block in "J" direction for each grid block is assigned to its x-permeability value.

Example 2:

```
PERMY=If(Dimension("J")>=50, 25,15);
The y-permeability value will be 25 for all grid blocks with J direction
dimension greater than or equal to the 50, and the value of 15 is assigned
for other grid blocks.
```

• Using "Coordinate" Function:

It has one input of the I, J, or K index as string in the "I", "J", or "K" format; it calculates the coordinate of each grid block in desired direction. The "I", "J", and "K" parameters can be inserted either using "Params" dropdown list or by typing in the script as mentioned format.

Example 1:

```
PERMX=Coordinate ("J");
The coordinate of grid block in "J" direction is assigned to each grid block x-permeability value.
```

Example 2:

PERMY=If(Coordinate("J")<12500, 2000 ,1500);</pre>

```
The y-permeability value will be 2000 for all grid blocks with J direction coordinate less than 12500, and the value of 1500 is assigned for other grid blocks.
```

• Using "Results" Function:

It has two inputs; the first one the name of the desired result grid property as "Name" and the second one is the date in which the result is requested as "YY/MM/DD". If user uses this function the inputs must be inserted by typing; there is another and more user friendlier way to use this function: after importing grid results using import item of the RETINA main page's left panel, a list of "Loaded Grid Results" are displayed in the related section in script calculator; user can insert the result function with its inputs just choosing the date (from date combo box in front of each result) and push the "put into the script" icon; in this way the "Result" function with both input parameters will be inserted automatically to the script.

Example 1:

PERMX=Result("BOSAT", "2007/02/01");
The result values of block oil saturation at the date 2007/02/01 are assigned

Page 100

to each grid block x-permeability value.

Example 2:

PERMY=If(Result("BOSAT", "2005/07/01")>0.5,10,5); The y-permeability value will be 10 for all grid blocks with result block oil saturation at date 2007/07/01 greater than 0.5, and the value of 5 is assigned for other grid blocks.

• Using "Property" Function:

It has two inputs; the first one the name of the desired grid property as "Name" and the second one is the date in which the property is requested as "YY/MM/DD". If user uses this function the inputs must be inserted by typing; there is another and more user friendlier way to use this function: if you have schedulable grid properties, user can insert the "Property" function with its inputs just choosing the date (from date combo box in front of each grid) and push the "put into the script" icon; in this way the "Property" function with both input parameters will be inserted automatically to the script. In case of using grid properties at start date, the "property" function does not need to use; only putting desired property in the script is enough.

Example 1:

PERMX= Property("MULTX", "2006/02/01");

The property values of the transmissibility in x direction at the date 2006/02/01 are assigned to each grid block x-permeability value.

Example 2:

PERMY=If(Property("MULTX", "2006/02/01")>0.5,10,5);

The y-permeability value will be 10 for all grid blocks with transmissibility multiplier value of x direction at date 2006/02/01 greater than 0.5, and the value of 5 are assigned for other grid blocks.

• Using "DistanceToWell" Function:

It has only one input of the well name as "WellName" string format. It will give the distance of each grid block to the desired well.

Example 1:

PERMX=DistanceToWell("P01");

The grid block distance to the well PO1 value is assigned to its permeability value in x direction for each grid block.

Example 2:

```
PERMY=If(DistanceToWell("P01")>DistanceToWell("P02"),PERMX,Property("MULTX",
"2006/02/01"));
```

The x permeability value will be assigned to the y permeability value for each grid which its distance to well PO1 is greater than its distance to well PO2; otherwise the property of transmissibility multiplier in x direction at date 2006/02/01 is assigned to the y permeability value.

• Using "WellConnection" Function:

It has only one input of the well name as "WellName" string format. This function will give the connection of the desired well.

Example:

A=WellConnection("P01");

A includes an array in which the well PO1's connections are specified. After using this function you can see the connections on the 3D view.

Using "AllWellConnection" Function:

It does not input. This function will give the all connections of the defined wells.

Example:

A=AllWellConnection();

A includes an array in which the all well's connections are specified. After using this function you can see the connections on the 3D view.

3-2- Using Reservoir Data Tab

Reservoir Data tab is used to define PVT, Rock, Saturation, Equilibration, End Point Scaling, and Aquifer data.

3-2-1- PVT Region Data

The "PVT Region Data" button is used to define PVT regions and API tracking Option. Figure 90 displays the PVT Region Data dialog. The model system phase is displayed as a comment in this dialog. There are two tables in left side of this dialog; 1- PVT region and 2- Table list.

🍭 PVT Data Management							
PVT Data Management							
+ — ab	NOTE: The	model system pha	se is: Oil, W	ater, Gas and Dissolved Gas			
PVT Region	PVT Data	Types			API Tracking		
	Family D	ata: Oil:PVTO ,Wate	er:PVTW ,Gas	PVDG The Has STOG Data	API Tracking	API Groups No. : 1	
<u>↓</u>	Paramete	rs Tables					
	PVT Data	Parameters:					
	Name	Value	Unit				
	_						
Table List							
	<u>ה</u>						
Metric (ECLIPSE™) ▼ 0.00						Import Eclipse PVT Cancel	ОК

Figure 90 PVT Region Data Dialog

For adding or removing some PVT regions, the + and – buttons are used, respectively. Add, remove and auto naming is same as <u>section 3-2-6</u>. After adding desired region, window of Figure 91 is displayed, in which all the fields are active. The components of the PVT window will describe in next sections. User can move defined PVT regions using up or down arrows. Same as Fault manager window, there is a button of ab in the PVT data management window, which is used to auto naming of the defined regions. Assume you

want to auto name 3 regions which are defined before, clicking on ab will change the names to "PVT 1" to PVT 3". If you want to rename a specific PVT region you can double click on it and type the name. In case of API Tracking, after activating it by check the related box, the number of it groups is inserted in "API Group No".

2 PVT Data Management	Land La					
PVT Data Management						\bigcirc
+ - ab PVT Region 1 PVT Data - 01	NOTE: The model system phase i	s: Oil, Water, Gas ar TW ,Gas:PVDG	nd Dissolved Gas	s	API Tracking	API Groups No. : 1
	↓ Parameters Tables					
	PVT Data Parameters:					
	Name	Value	Unit			
	Water Compressibility	3.9795E-05	Bar ⁻¹			
	Standard Gas Density	0.81172	Kg/m³			
	Standard Oil Density	800.91	Kg/m³			
	Standard Water Density	1020.3	Kg/m ³			
	Water Formation Volume Factor	1.0132	M ³ /SM ³			
Table List	Water Reference Pressure	215.0	Bar			
PVTO	Water Viscosibility	*	Bar ⁻¹			
PVDG	Water Viscosity	0.39851	CPoise			
		1				
Metric (ECLIPSE™) ▼	0.00			Import	Eclipse PVT Can	icel OK

Figure 91- PVT Data Management Dialog after Adding PVT Region Data

Sometimes user wants to copy a PVT Region data to some others. In this case right clicking on the source PVT region and selecting copy or paste can be useful. Also an "Import Eclipse PVT" facility has been provided for PVT data importing in a user friendly way.

PVT Data Types:

In these section types of PVT data for oil, water and gas are selected. If there are some data of oil/gas surface tension the "Has STOG Data" should be checked. There are eight families of the PVT data in this section, which user can select each of the based on the model system phase.

💐 PVT Data Management							
PVT Data Managemen	it						÷
+ — ab		NOTE: The model system phase is	: Oil, Water, Gas and D	issolved Gas			
PVT Region		PVT Data Types				API Tracking	
1 PVT Data - 01		Family Data: Oil:PVTO ,Water:PV Oil:PVTO Water:PV	TW ,Gas:PVDG	•	🔲 Has STOG Data	API Tracking	API Groups No. : 1 👘
		Parameters Oil:PVTO,Water:PV Oil:PVTO,Water:PV PVT Data Pari Oil:PVCO & PMAX, Oil:PVCO & PMAX, Name Oil:PVCO & PMAX, Water Comp Oil:PVCO, Water:PV Standard Ga Oil:PVCDO, Water:P	TW ,Gas:PVZG TW ,Gas:PVTG Water:PVTW ,Gas:PVD0 Water:PVTW ,Gas:PVZ0 Water:PVTW ,Gas:PVT0 TW ,Gas:NONE VTW ,Gas:NONE	5			
		Standard Oil Density	800.91	Kg/m ³			
		Standard Water Density	1020.3	Kg/m ³			
		Water Formation Volume Factor	1.0132	M ³ /SM ³			
Table List		Water Reference Pressure	215.0	Bar			
PVTO		Water Viscosibility	*	Bar ⁻¹			
PVDG		Water Viscosity	0.39851	CPoise			
Metric (ECLIPSE™) ▼	0.00				Import	Eclipse PVT Canc	el OK

Figure 92- PVT Data Types

Family 1: Oil: PVTO, Water: PVTW, Gas: PVDG:

Only two tables of PVTO and PVDG are necessary for this PVT family data; Note that the PVTW data are not entered in table; this data will be entered in parameters tab.

<u>PVTO Table:</u>

The PVTO table is used to define the PVT properties of live oil (with dissolved gas), in which PVT data for a particular dissolved gas-oil ratio (Rs) are given. Within a PVTO table, records should be arranged in order of increasing Rs (first column). The second column of the PVTO table includes bubble point pressure (Pb) values for oil with dissolved gas-oil ratio given by column 1. The third and fourth columns of the table include oil formation volume factor (Bo), and oil viscosity (μ o) for saturated oil at bubble point pressure. Some tables (optionally all) contain additional data which defines the properties of undersaturated oil at the specified value of Rs. This extra data must be specified for the highest Rs in each table. The additional data takes the form of 3 columns that continue from

column 2, 3 and 4 above. In such cases the oil phase pressure (Po) values must increase down the column (starting from Pb), the oil formation volume factor (Bo) corresponding to Rs and Po must decrease down the column, and finally the oil viscosity corresponding to Rs and Po should be increasing down the column.

There must be the same number of entries in each column. If no additional data is supplied for a particular value of Rs, it locates the next higher value of Rs for which under saturated PVT data is available, and takes a scaled copy of the Bo and viscosity curves supplied there. Figure 93 displays a typical PVTO table and related cures.

Note: the data for under saturated oil must be provided for the highest Rs in the PVTO table.

Note: RETINA linearly interpolates the 1/Bo and $1/(Bo.\mu o)$ between data points, rather than the values themselves.

Note: In case of using the "API Tracking" option the set of tables must be entered in increasing order of surface density (or decreasing order of API gravity).

🍭 PVT Data Management	_							
PVT Data Management								٢
+ - ab PVT Region 1 PVT Data - 01 ↔ & & & & & & & & & & & & &	NOTE: T PVT Da Family Parame	the model system ata Types y Data: Oil:PVTr eters Tables	em phase is: O ,Water:PVT	Oil, Water, Gas a W ,Gas:PVDG	und Dissolved	Gas	Has STOG Data	API Tracking API Groups No. : 1
		RS (SM ³ /M ³)	Pb (Bar)	Bo (M ³ /SM ³)	μο (CPoise)		Selected Diagram:	Oil Viscosity vs. Pressure
	1	60.177	86.0	1.2062	0.35978			Oil Viecocity ve Prossuro
	2		105.0	1.1998	0.36969	Ε		On viscosky vs. i ressure
	3		124.0	1.1953	0.38173			
	4		143.0	1.1921	0.39567		0.8 -	
	5		162.0	1.1896	0.41137		1	
	6		181.0	1.1876	0.4287		0.7	
	7		200.0	1.186	0.44758			
	8		219.0	1.1847	0.46792			
Table List	9		238.0	1.1836	0.48968			
PVDG	10		257.0	1.1827	0.51279		D	
	11		276.0	1.1819	0.53718		<u>육</u> 0.4 -	
	12		295.0	1.1812	0.56282		1	
	13		314.0	1.1806	0.58963		0.3 -	
	14		333.0	1.18	0.61757			
	15		352.0	1.1795	0.64657			
	16		371.0	1.1791	0.67656			
	17		390.0	1.1787	0.70747			100.0 150.0 200.0 250.0 300.0 350.0 400.0
	18		409.0	1.1783	0.73923			P (Bar)
	19		428.0	1.178	0.77175		Oil Viscosity vs	Pressure
	20		447.0	1.1777	0.80497		÷,	
	21	76.526	105.0	1.2455	0.33106			
	22		12/10	1 220	0.34000	Ŧ		
Metric (ECLIPSE™) ▼ 0.00]							Import Eclipse PVT Cancel OK

Figure 93 A Typical PVTO Table and Curves

<u>PVDG Table:</u>

The PVDG table is used to define the PVT properties of dry gas (no vaporized oil). Each table consists of three columns of data; the first one is the gas phase pressure which its values should increase monotonically down the column; the second column includes the corresponding gas formation volume factor which its values should decrease down the column; and finally the third column includes the corresponding gas viscosity; the values of the gas viscosity should be level or increasing down the column. There must be the same number of entries in each column of a given table. Figure 94 displays a typical PVDG table and corresponding curve.

2 PVT Data Management													
PVT Data Management													\bigcirc
+ - ab PVT Region PVT Data - 01	NOTE: 1 PVT Da Family	The model sys ata Types y Data: Oil:PV eters Tables	tem phase is: 0 TO ,Water:PVTW	Dil, Water, Gas an /,Gas:PVDG	d Dissolve	ed Gas	OG Data	API Tracking	g :king	API Groups No).: 1 <u>*</u>		
		Pa (Bar)	Ba (M ³ /SM ³)	ug (CPoise)]]
	1	80.0	0.013974	0.01446	Select	ted Diagram:	Gas For	rmation Volun	ne Factor vs.	Gas Pressure			•
	2	99.0	0.011116	0.015131			G	Gas Formati	on Volume	e Factor vs. Ga	s Pressure		
	3	118.0	0.0092127	0.015886									
	4	137.0	0.0078691	0.016717									
	5	156.0	0.0068821	0.017614		1	\mathbf{N}						
	6	175.0	0.0061356	0.018566		0.012							
	7	194.0	0.0055579	0.019556		1							
	8	213.0	0.0051024	0.020571	5	0.01							
Table List	9	232.0	0.0047371	0.021598	NS.			\mathbf{n}					
PVIO	10	251.0	0.0044396	0.022626	E S	0.008 -							
PVDG	11	270.0	0.0041939	0.023647	Ba	0.006		~					
	12	289.0	0.0039883	0.024657		1			-	_			
	13	308.0	0.0038141	0.025649		0.004						_	
	14	327.0	0.0036648	0.026622									
	15	346.0	0.0035356	0.027575									
	16	365.0	0.0034227	0.028507			400.0						
	17	384.0	0.0033231	0.029418			100.0	150.0	200.0	250.0	300.0	350.0 40	0.0
	18	403.0	0.0032347	0.030308						Pg (Bar)			
	19	422.0	0.0031555	0.031178		Gas Formation Vol	ume Factor	vs. Gas Pressu	ure				
	20	441.0	0.0030843	0.032029									
Metric (ECLIPSE™) ▼ 0.0	0									Import Eclipse	PVT C	ancel	ОК

Figure 94 A Typical PVDG Table and Curve

<u>PVTW Data:</u>

The PVTW includes water PVT functions including: The water compressibility, standard gas density, standard oil density, standard water density, water formation volume factor, water reference pressure, water viscosity, and viscosibility. The Figure 95 displays the PVT Data parameters which includes PVTW data.

2 PVT Data Management	No. of Concession, Name								
PVT Data Management							\bigcirc		
+ — ab	NOTE: The model system phase is	: Oil, Water, Gas and D	ssolved Ga	8					
PVT Region	PVT Data Types				API Tracking	API Tracking			
1 PVT Data - 01	Family Data: Oil:PVTO ,Water:PVT	W ,Gas:PVDG	-	🔲 Has STOG Data	API Tracking	API Groups No. :			
Ţ	Parameters Tables								
	PVT Data Parameters:								
	Name	Value	Unit						
	Water Compressibility	3.9795E-05	Bar ⁻¹						
	Standard Gas Density	0.81172	Kg/m³						
	Standard Oil Density	800.91	Kg/m ³						
	Standard Water Density	1020.3	Kg/m³						
	Water Formation Volume Factor	1.0132	M³/SM³						
	Water Reference Pressure	215.0	Bar						
	Water Viscosibility	*	Bar ⁻¹						
	Water Viscosity	0.39851	CPoise						
Table List									
PVTO									
PVDG									
Metric (ECLIPSE™) ▼ 0.00]					Import Eclipse PVT Cancel	ОК		

Figure 95 A Typical Water PVT Data

Family 2: Oil: PVTO, Water: PVTW, Gas: PVZG:

Only two tables of PVTO and PVZG are necessary for this PVT family data; Note that the PVTW data are not entered in table; this data will be entered in parameters tab.

<u>PVTO Table:</u>

The PVTO table is used to define the PVT properties of live oil (with dissolved gas), in which PVT data for a particular dissolved gas-oil ratio (Rs) are given. Within a PVTO table, records should be arranged in order of increasing Rs (first column). The second column of the PVTO table includes bubble point pressure (Pb) values for oil with dissolved gas-oil ratio given by column 1. The third and fourth columns of the table include oil formation volume factor (Bo), and oil viscosity (μ o) for saturated oil at bubble point pressure. Some tables (optionally all) contain additional data which defines the properties of undersaturated oil at the specified value of Rs. This extra data must be specified for the highest Rs in each table. The additional data takes the form of 3 columns that continue from column 2, 3 and 4 above. In such cases the oil phase pressure (Po) values must increase down the column (starting from Pb), the oil formation volume factor (Bo) corresponding

to Rs and Po must decrease down the column, and finally the oil viscosity corresponding to Rs and Po should be increasing down the column.

There must be the same number of entries in each column. If no additional data is supplied for a particular value of Rs, it locates the next higher value of Rs for which under saturated PVT data is available, and takes a scaled copy of the Bo and viscosity curves supplied there. Figure 93 displays a typical PVTO table and related cures.

Note: the data for under saturated oil must be provided for the highest Rs in the PVTO table.

Note: RETINA linearly interpolates the 1/Bo and $1/(Bo.\mu o)$ between data points, rather than the values themselves.

Note: In case of using the "API Tracking" option the set of tables must be entered in increasing order of surface density (or decreasing order of API gravity).

<u>PVTW Data:</u>

The PVTW includes water PVT functions including: The water compressibility, standard gas density, standard oil density, standard water density, water formation volume factor, water reference pressure, water viscosity, and viscosibility. The Figure 95 displays the PVT Data parameters which includes PVTW data.

PVZG Table:

The PVZG table is used to define the PVT properties of dry gas (using Z-factors). Each table consists of three columns of data; the reference temperature should be defined in parameters tab for this table. The three columns of the PVZG table include the gas phase pressure, the corresponding compressibility (Z) factor, and the corresponding gas viscosity, respectively. The gas phase pressure values should increase monotonically down the column, whereas the gas viscosity values should be level or increasing down the column. There must be the same number of entries in each column of a given table. The Figure 96 displays a typical PVZG table and curve.

2) PVT Data Management					
PVT Data Management					
+ - ab PVT Region 1 PVT Data - 01 公 	NOTE: PVT I Fam	: The model syst Data Types illy Data: Oil:PVT meters Tables	em phase	is: Oil, Water, Gas a VTW ,Gas:PVZG	API Tracking Has STOG Data API Tracking API Groups No.: 1 n
		P (Bar)	Z (-)	ug (CPoise)	
	1	400.0	1.22	0.013	Selected Diagram:
	2	1200.0	1.3	0.014	Compressibility Factor vs. Pressure
	3	2000.0	1.34	0.015	
	4	2800.0	1.5	0.016	10 -
	5	3600.0	1.55	0.017	
	6	4000.0	1.7	0.0175	1.8
	7	4800.0	1.82	0.0185	1.7 -
	8	5200.0	1.91	0.019	
Table List					
PVZG					N 1.5
					1.4
	_				
					500.0 1000.0 1500.0 2000.0 2500.0 3000.0 3500.0 4000.0 4500.0 5000.0 P (Bar) Compressibility Factor vs. Pressure
Metric (ECLIPSE™) ▼ 0.00]				Import Eclipse PVT Cancel OK

Figure 96 A Typical PVZG Table and Curve

Note: The *Z*- factor is related to the formation volume factor, reference temperature and pressure.

Family 3: Oil: PVTO, Water: PVTW, Gas: PVTG:

Only two tables of PVTO and PVTG are necessary for this PVT family data; Note that the PVTW data are not entered in table; this data will be entered in parameters tab.

<u>PVTO Table:</u>

The PVTO table is used to define the PVT properties of live oil (with dissolved gas), in which PVT data for a particular dissolved gas-oil ratio (Rs) are given. Within a PVTO table, records should be arranged in order of increasing Rs (first column). The second column of the PVTO table includes bubble point pressure (Pb) values for oil with dissolved gas-oil ratio given by column 1. The third and fourth columns of the table include oil formation volume factor (Bo), and oil viscosity (μ o) for saturated oil at bubble point pressure. Some tables (optionally all) contain additional data which defines the properties of undersaturated oil at the specified value of Rs. This extra data must be specified for the highest

Rs in each table. The additional data takes the form of 3 columns that continue from column 2, 3 and 4 above. In such cases the oil phase pressure (Po) values must increase down the column (starting from Pb), the oil formation volume factor (Bo) corresponding to Rs and Po must decrease down the column, and finally the oil viscosity corresponding to Rs and Po should be increasing down the column.

There must be the same number of entries in each column. If no additional data is supplied for a particular value of Rs, it locates the next higher value of Rs for which under saturated PVT data is available, and takes a scaled copy of the Bo and viscosity curves supplied there. Figure 93 displays a typical PVTO table and related cures.

Note: the data for under saturated oil must be provided for the highest Rs in the PVTO table.

Note: RETINA linearly interpolates the 1/Bo and $1/(Bo.\mu o)$ between data points, rather than the values themselves.

Note: In case of using the "API Tracking" option the set of tables must be entered in increasing order of surface density (or decreasing order of API gravity).

PVTW Data:

The PVTW includes water PVT functions including: The water compressibility, standard gas density, standard oil density, standard water density, water formation volume factor, water reference pressure, water viscosity, and viscosibility. The Figure 95 displays the PVT Data parameters which includes PVTW data.

<u>PVTG Table:</u>

The PVTG table is used to define the PVT properties of wet gas (with vaporized oil). Each table gives PVT data for a particular gas phase pressure (Pg). There are four columns in the PVTG table; the first column includes the gas phase pressure in which the values should be increasing down the column. The second column includes vaporized oil-gas ratio (Rv) for saturated gas at pressure Pg; the third and fourth items are the gas formation volume factor for saturated gas, and the gas viscosity for saturated gas at Pg, respectively.

Always PVTG tables contain additional data that defines the properties of under saturated gas at the specified value of gas phase pressure. This data must be specified for

the highest Pg in each table. The additional data takes the form of three columns which continue from items 2, 3 and 4 above. In such cases, the values of Rv must decrease down the column (starting from the value for saturated gas); There must be the same number of entries in each column. If no additional data is supplied for a particular value of Pg, it locates the next higher value of Pg for which under saturated PVT data is available, and takes a scaled copy of the formation volume factor and viscosity curves supplied there. The typical PVTG table and curves have been displayed in the Figure 97.

Note: the data for under saturated gas must be provided for the highest Pg in the PVTG table.

2 PVT Data Management	-	_						
PVT Data Management								
+ - ab PVT Region 1 PVT Data - 01 小 少	NOT PV Fa	TE: The m T Data Ty amily Data rameters	nodel sys rpes a: Oil:PV Tables	item phase is: TO ,Water:PVT	: Oil, Water, Gas W ,Gas:PVTG	and Dissolved C	G as	API Tracking a API Tracking API Groups No. : 1
		Pd	(Bar)	RV (SM ³ /M ³)	Bg (M ³ /SM ³)	ug (CPoise)	C L IN:	
	1	3	0.0	0.00014	0.0523	0.0234	Selected Diagram:	Gas viscosity inverse vs. vaporized Oil-Gas Ratio
	2			0.0	0.0521	0.0238		Gas Viscosity Inverse vs. Vaporized Oil-Gas Ratio
	3	9	0.0	0.00012	0.0132	0.0252	10	
	4			0.0	0.0131	0.0253		
	5	15	50.0	0.00015	0.00877	0.0281		
	6	i		0.0	0.00861	0.0275		••••••••••••••••••••••••••••••••••••••
	7	21	10.0	0.00019	0.00554	0.0318		
	8			0.0	0.00555	0.0302	T 36.0 -	
Table List	9	27	70.0	0.00029	0.00417	0.0355	· · · · · · · · · · · · · · · · · · ·	
PVTO	1	0		0.0	0.00421	0.033	b 32.0 -	
PVIG	1	1 33	30.0	0.00049	0.00357	0.0392	E 20.0	
	1	2		0.0	0.00361	0.0358	≈ 30.0	
	1	3					28.0	
	1	4					26.0 =	
	1	5						
	1	6					-	
	1	7						5.0E-05 0.0001 0.00015 0.0002 0.00025 0.0003 0.00035 0.0004 0.00045
	1	8						RV (SM [*] /M [*])
	1	9					Gas Viscosity	Inverse vs. Vaporized Oil-Gas Ratio
	2	0						
	2	1						
Metric (ECLIPSE™) ▼ 0.00	0							Import Eclipse PVT Cancel OK

Figure 97 A Typical PVTG Table and Curves

Family 4: Oil: PVCO & PMAX, Water: PVTW, Gas: PVDG:

Only two tables of PVCO and PVDG are necessary for this PVT family data; Note that the PVTW data are not entered in table; this data will be entered in parameters tab. the maximum pressure is available in the parameter tab for this type of data.

<u>PVCO Table:</u>

The PVCO table is used to define PVT properties of live oil in compressibility form (with dissolved gas). This data family offers a simpler method of entering tables of live oil PVT properties than with the PVTO. The difference between the two families is that the PVCO assumes that under saturated oil with a particular Rs value has a compressibility that is independent of the pressure, and that the viscosity of under saturated oil has a pressure-independent derivative. Thus there is no need to provide tables of under saturated oil formation volume factor and viscosity versus pressure. Each table consists of six columns.

- First column: The bubble point pressure (Pb) for oil with the dissolved gas-oil ratio given by second column. In each table, the pressure values should increase monotonically down the column.
- Second column: The dissolved gas-oil ratio (Rs) of saturated oil with bubble point given by first column. The values should increase monotonically down the column.
- Third column: The formation volume factor of saturated oil at Pb.
- Fourth column: The viscosity of saturated oil at Pb.
- Fifth column: The compressibility of under saturated oil with a dissolved gas-oil ratio given by the second column.
- Sixth column: The "viscosibility", or viscosity compressibility, of under saturated oil with a dissolved gas-oil ratio given by the second column.

If the PVCO including family is used, the maximum pressure (PMAX) expected in the simulation must also be entered. This information is used for two purposes. Firstly, the under saturated parts of the oil PVT tables are automatically filled out in the form of the PVTO table, up to the pressure entered in PMAX. Secondly, RETINA carries out a check to see if compressibility values are changing too rapidly with so that the curves of under saturated oil formation volume factor for two different values of cross each other. A warning is printed if they cross at a pressure below the maximum pressure entered in PMAX.

Note: RETINA linearly interpolates the 1/Bo and $1/(Bo.\mu o)$ between data points, rather than the values themselves.

Note: When using the API Tracking option, the set of tables must be entered in increasing order of surface density (or decreasing order of API gravity).

<u>PVTW Data:</u>

The PVTW includes water PVT functions including: The water compressibility, standard gas density, standard oil density, standard water density, water formation volume factor, water reference pressure, water viscosity, and viscosibility. The Figure 95 displays the PVT Data parameters which includes PVTW data.

PVDG Table:

The PVDG table is used to define the PVT properties of dry gas (no vaporized oil). Each table consists of three columns of data; the first one is the gas phase pressure which its values should increase monotonically down the column; the second column includes the corresponding gas formation volume factor which its values should decrease down the column; and finally the third column includes the corresponding gas viscosity; the values of the gas viscosity should be level or increasing down the column. There must be the same number of entries in each column of a given table. Figure 94 displays a typical PVDG table and corresponding curve.

Family 5: Oil: PVCO & PMAX, Water: PVTW, Gas: PVZG:

Only two tables of PVCO and PVZG are necessary for this PVT family data; Note that the PVTW data are not entered in table; this data will be entered in parameters tab.

<u>PVCO Table:</u>

The PVCO table is used to define PVT properties of live oil in compressibility form (with dissolved gas). This data family offers a simpler method of entering tables of live oil PVT properties than with the PVTO. The difference between the two families is that the PVCO assumes that under saturated oil with a particular Rs value has a compressibility that is independent of the pressure, and that the viscosity of under saturated oil has a pressure-independent derivative. Thus there is no need to provide tables of under saturated oil formation volume factor and viscosity versus pressure. Each table consists of six columns.

- First column: The bubble point pressure (Pb) for oil with the dissolved gas-oil ratio given by second column. In each table, the pressure values should increase monotonically down the column.
- Second column: The dissolved gas-oil ratio (Rs) of saturated oil with bubble point given by first column. The values should increase monotonically down the column.
- Third column: The formation volume factor of saturated oil at Pb.
- Fourth column: The viscosity of saturated oil at Pb.

- Fifth column: The compressibility of under saturated oil with a dissolved gas-oil ratio given by the second column.
- Sixth column: The "viscosibility", or viscosity compressibility, of under saturated oil with a dissolved gas-oil ratio given by the second column.

If the PVCO including family is used, the maximum pressure (PMAX) expected in the simulation must also be entered. This information is used for two purposes. Firstly, the under saturated parts of the oil PVT tables are automatically filled out in the form of the PVTO table, up to the pressure entered in PMAX. Secondly, RETINA carries out a check to see if compressibility values are changing too rapidly with so that the curves of under saturated oil formation volume factor for two different values of cross each other. A warning is printed if they cross at a pressure below the maximum pressure entered in PMAX.

Note: RETINA linearly interpolates the 1/Bo and 1/($Bo.\mu o$) between data points, rather than the values themselves.

Note: When using the API Tracking option, the set of tables must be entered in increasing order of surface density (or decreasing order of API gravity).

<u>PVTW Data:</u>

The PVTW includes water PVT functions including: The water compressibility, standard gas density, standard oil density, standard water density, water formation volume factor, water reference pressure, water viscosity, and viscosibility. The Figure 95 displays the PVT Data parameters which includes PVTW data.

PVZG Table:

The PVZG table is used to define the PVT properties of dry gas (using Z-factors). Each table consists of three columns of data; the reference temperature should be defined in parameters tab for this table. The three columns of the PVZG table include the gas phase pressure, the corresponding compressibility (Z) factor, and the corresponding gas viscosity, respectively. The gas phase pressure values should increase monotonically down the column, whereas the gas viscosity values should be level or increasing down the column. There must be the same number of entries in each column of a given table. The Figure 96 displays a typical PVZG table and curve.

Family 6: Oil: PVCO & PMAX, Water: PVTW, Gas: PVTG:

Only two tables of PVCO and PVTG are necessary for this PVT family data; Note that the PVTW data are not entered in table; this data will be entered in parameters tab.

PVCO Table:

The PVCO table is used to define PVT properties of live oil in compressibility form (with dissolved gas). This data family offers a simpler method of entering tables of live oil PVT properties than with the PVTO. The difference between the two families is that the PVCO assumes that under saturated oil with a particular Rs value has a compressibility that is independent of the pressure, and that the viscosity of under saturated oil has a pressure-independent derivative. Thus there is no need to provide tables of under saturated oil formation volume factor and viscosity versus pressure. Each table consists of six columns.

- First column: The bubble point pressure (Pb) for oil with the dissolved gas-oil ratio given by second column. In each table, the pressure values should increase monotonically down the column.
- Second column: The dissolved gas-oil ratio (Rs) of saturated oil with bubble point given by first column. The values should increase monotonically down the column.
- Third column: The formation volume factor of saturated oil at Pb.
- Fourth column: The viscosity of saturated oil at Pb.
- Fifth column: The compressibility of under saturated oil with a dissolved gas-oil ratio given by the second column.
- Sixth column: The "viscosibility", or viscosity compressibility, of under saturated oil with a dissolved gas-oil ratio given by the second column.

If the PVCO including family is used, the maximum pressure (PMAX) expected in the simulation must also be entered. This information is used for two purposes. Firstly, the under saturated parts of the oil PVT tables are automatically filled out in the form of the PVTO table, up to the pressure entered in PMAX. Secondly, RETINA carries out a check to see if compressibility values are changing too rapidly with so that the curves of under saturated oil formation volume factor for two different values of cross each other. A warning is printed if they cross at a pressure below the maximum pressure entered in PMAX.

Note: RETINA linearly interpolates the 1/Bo and $1/(Bo.\mu o)$ between data points, rather than the values themselves.

Note: When using the API Tracking option, the set of tables must be entered in increasing order of surface density (or decreasing order of API gravity).

PVTW Data:

The PVTW includes water PVT functions including: The water compressibility, standard gas density, standard oil density, standard water density, water formation volume factor, water reference pressure, water viscosity, and viscosibility. The Figure 95 displays the PVT Data parameters which includes PVTW data.

<u>PVTG Table:</u>

The PVTG table is used to define the PVT properties of wet gas (with vaporized oil). Each table gives PVT data for a particular gas phase pressure (Pg). There are four columns in the PVTG table; the first column includes the gas phase pressure in which the values should be increasing down the column. The second column includes vaporized oil-gas ratio (Rv) for saturated gas at pressure Pg; the third and fourth items are the gas formation volume factor for saturated gas, and the gas viscosity for saturated gas at Pg, respectively.

Always PVTG tables contain additional data that defines the properties of under saturated gas at the specified value of gas phase pressure. This data must be specified for the highest Pg in each table. The additional data takes the form of three columns which continue from items 2, 3 and 4 above. In such cases, the values of Rv must decrease down the column (starting from the value for saturated gas); There must be the same number of entries in each column. If no additional data is supplied for a particular value of Pg, it locates the next higher value of Pg for which under saturated PVT data is available, and takes a scaled copy of the formation volume factor and viscosity curves supplied there. The typical PVTG table and curves have been displayed in the Figure 97.

Note: the data for under saturated gas must be provided for the highest Pg in the PVTG table.

Family 7: Oil: PVDO, Water: PVTW, Gas: NONE:

Only two tables of PVDO table is necessary for this PVT family data; Note that the PVTW data are not entered in table; this family is for defining dead oil and no gas PVT is necessary for this data family.

<u>PVDO Table:</u>

The PVDO table is used to define PVT properties of dead oil (no dissolved gas). Each table consists of three columns. The first column is the oil phase pressure; the oil pressure values should increase monotonically down the column. The second column includes the corresponding oil formation volume factor in which, the values should decrease down the column. Third column is the corresponding oil viscosity. The oil viscosity values should be level or increasing down the column. There must be the same number of entries in each column of a given table. Figure 98 displays a typical PVDO table and curve. Two parameters of bubble point pressure and constant dissolved gas concentration must be entered in parameters tab.

🍭 PVT Data Management	-	_	-		
PVT Data Management					
+ - ab PVT Region 1 PVT Data - 01 分 炎	PVT Far Para	E: The model sy Data Types mily Data: Oil:F ameters Table	ystem phase is PVDO ,Water:PV S	:: Oil, Water, Gas a TW ,Gas:NONE	API Tracking API Tracking API Groups No. : 1 *
		Po (Bar)	Bo (M ³ /SM ³)	μο (CPoise)	Selected Diagram: Oil Formation Volume Factor vs. Oil Pressure
	1	400.0	1.012	1.16	
	2	1200.0	1.004	1.164	Oil Formation Volume Factor vs. Oil Pressure
	3	2000.0	0.996	1.167	
	4	2800.0	0.988	1.172	101
	5	3600.0	0.9802	1.177	1.01
	6	4400.0	0.9724	1.181	10-1
	7	5200.0	0.9646	1.185	
Table List PVDO			0.9007	1.19	6 0.99 0.98 0.97 1000.0 2000.0 3000.0 4000.0 5000.0
					Po (Bar) Oil Formation Volume Factor vs. Oil Pressure
Metric (ECLIPSE™) ▼ 0.00					Import Eclipse PVT Cancel OK

Figure 98 A Typical PVDO Table and Curves

PVTW Data:

The PVTW includes water PVT functions including: The water compressibility, standard gas density, standard oil density, standard water density, water formation volume factor, water reference pressure, water viscosity, and viscosibility. The Figure 95 displays the PVT Data parameters which includes PVTW data.

Family 8: Oil: PVCDO, Water: PVTW, Gas: NONE:

PVCDO Data:

There is no table in this family of the PVT data. All the values should be entered in parameters tab. the PVCDO data is used to define the dead oil PVT properties (with constant compressibility). It includes following parameters: oil formation volume factor, oil compressibility, oil viscosity, oil viscosibility, oil reference pressure, bubble point pressure, and dissolved gas concentration.

PVTW Data:

The PVTW includes water PVT functions including: The water compressibility, standard gas density, standard oil density, standard water density, water formation volume factor, water reference pressure, water viscosity, and viscosibility. The Figure 95 displays the PVT Data parameters which includes PVTW data.

PVT Plot Setting:

User can use right click on the plot to see setting (Figure 99). Setting includes save, fit data, plot property. The zoom action is performed using mouse wheel. Clicking on "Properties" leads user to the "Chart Properties" window. In this window, user can edit title, description and related fonts, axis setting like axis minimum and maximum values, scales, marker types, colors and etc.

🍭 PVT Data Managemen	
PVT Data Managemer	
PVT Region PVT Data - 01 PVT Data - 01	NOTE: The model system phase is: Oil, Water, Gas and Dissolved Gas PVT Data Types Family Data: Oil:PVDO, Water:PVTW, Gas:NONE Image: Barborn Street
Table List PVDO	Po (Bar) Bo (M ¹ /SM ³) μo (CPoise) 1 400.0 1.012 1.16 2 1200.0 1.004 1.164 3 2000.0 0.996 1.167 4 2800.0 0.988 1.172 5 3600.0 0.9802 1.177 6 4400.0 0.9724 1.181 7 5200.0 0.9646 1.185 8 5600.0 0.9607 1.19 0.97 - - 0.97 - - 0.97 - - 0.98 0.97 - 0.97 - - 0.98 0.97 - 0.97 - - 0.98 0.97 - 0.97 - - 0.98 0.97 - 0.97 - - 0.97 - - 0.98 - - 0.97 - - 0.98 - - 0.97<
Metric (ECLIPSE™) ▼	0.00 Import Eclipse PVT Cancel OK

Figure 99 Plots Setting

3-2-2- Rock Region Data

The rock region data can only define in this section. Clicking "Rock Region Data" button, the window of Figure 100 is opened. The naming, sorting and add or remove actions procedure is same as <u>section 3-2-1</u>. The Rock Region dialog includes Rock Parameters and Rock table. Using Rock Option tab one of the PVTNUM, SATNUM or ROCKNUM have to be selected.

Rock Region Data Managemer	nt			
Rock Region Data Manageme	ent			
Rock Options Rock Properties Region Type:				
Rock Regions Data				
+ − ab	Is Rock Compaction?			
Rock Region -	Rock Paramaters Rock Table			
1 Rock Data - 01	Rock Data Parameters:			_
 ۲٫	Name	Value	Unit	
	Rock Compressibility	*	Bar ⁻¹	
	Standard Pressure	*	Bar	
	Compaction Model	Reversible 👻	-	
	Initial Pore Volume Adjustment	No Store 👻	-	
	Pressure of Rock Compaction Tables	Effective Fluid Pressure 👻	-	
Table List				
OVERBURD				
		·		
Metric (ECLIPSE™) ▼ 0.00				Cancel OK

Figure 100- Rock Region Data Management

If the "Is Rock compaction?" does not checked only the OVERBURD table will be available in the table list and following data in the "Rock Parameters" tab: Rock compressibility, standard pressure, compaction model, initial pore volume adjustment, and pressure of rock compaction tables. There are two methods of reversible and irreversible for defining compaction model. The "Store" and "No Store" options are available for the initial pore volume adjustment. The pressure of rock compaction table either can be effective fluid pressure or effective rock stress. When the "Is Rock compaction?" is checked, the rock compressibility and standard pressure fields are removed and two new tables of ROCKTAB and ROCTSIG are added to the table list.

Note: the ROCKTSIG are only available for dual (fractured) models

Rock Properties Region Type:

If SATNUM or ROCKNUM are not found in the defined REGIONs, default PVTNUM values will be used.

Compaction Model:

There are two models for rock compaction: "Reversible" in which the Rock compaction is fully reversible with increasing pressure, and "Irreversible", in which the Rock compaction is irreversible; the pore space does not re-inflate when the pressure increases

Initial Pore Volume Adjustment:

The "Store" option copies the initial equilibrated pressure at the start of the run into the overburden array. This has the effect of referencing the pore volume (as a function of pressure) to the initial pressure rather than the reference pressure, that is, the pressure with a pore volume multiplier of 1.0 in the ROCKTAB table. Thus the input pore volume for a cell is defined as the pore volume at initial conditions rather than the pore volume at the reference pressure.

Note: the OVERBURD table should not be used with the "Store" option as the input OVERBURD data will be overwritten and ignored.

Pressure of Rock Compaction Tables:

If the overburden pressure supplied in the OVERBURD table is greater than the fluid pressure (which it often will be), the effective fluid pressure (Peff fl= Pfluid- Overburden) will be negative. In this case the rock compaction tables will have to be entered with negative pressure values. The tables can be input in a more intuitive manner by selecting the "Effective Rock Stress" option before the tables are entered. In this case the pore volume and transmissibility multipliers will be tabulated against the effective overburden pressure, Peff ov = Overburden - Pfluid, which will then be positive. This item should be left defaulted if the OVERBURD table is not used. The default value of the "pressure of rock compaction tables" is effective fluid pressure.

The three tables of ROCKTAB, ROCKTSIG, and OVERBURD are explained in this section.

1- ROCKTAB (Rock compaction data) Table:

Each table consists of five columns of data. Apart from the last or first rows, values in the second and third columns may be defaulted, and such values are linearly interpolated. All values in the fourth and fifth columns can be defaulted, and if this is done the values from the third column are used.

The first column includes the pressure values which should increase monotonically down the column, unless the "Effective Rock Stress" option has been used in the

"Pressure of Rock Compaction Tables", in such case the values should decrease monotonically down the column. The second column is the corresponding pore volume multiplier; these values should be level or increasing down the column. Third column contains the corresponding transmissibility multiplier in x direction, which its values should be level or increasing down the column. The y and z direction transmissibility multipliers are placed in column 4 and 5, respectively. There must be the same number of entries in each column of a given table. Figure 101 displays the ROCKTAB table and corresponding plot.

ock Options		PVTNUM	•				
ock Properties Region Type.							
+ - ab	🔽 Is R	ock Compactio	n?				
Rock Region	Rock	Paramaters R	ock Table				
Rock Data - 01		Droscuro (nci)	DV Mult ()	V Tran Mult ()	V Trap Mult ()	ZTrap Mult ()	ROCKTAB
	1	1000.0	0.9	1.0	1.0	2 Tran. Wuit. (-) 1.0	ROCKIAD
√>	2	2000.0	0.94	0.99	0.98	1.0	
	3	3000.0	0.96	0.95	0.96	1.0	
	4	4000.0	1.0	0.95	0.96	0.99	
							0.97
							0.96
							0.92
able List							0.91
ОСКТАВ							
OCKTSIG							
VERBURD							1000.0500.2000.2500.0000.0500.0
							Pressure (psi)
							PV Mult. X Trap Mult
							Y Tran. Mult.
							🔶 Z Tran. Mult.

Figure 101 Rock Compaction Data Table and Plot

2- OVERBURD (Rock overburden pressure) Table:

This table consists two columns of the depth and the corresponding overburden pressure. The depth values should decrease monotonically down the column by default, since the positive z direction in RETINA is upward. The over burden values should increase monotonically down the column.

There must be the same number of entries in each column of a given table. The OVERBURD table can be used if the Rock Compaction option is selected. The overburden pressure at the grid block depth is subtracted from the pore pressure

to look up the pore volume and transmissibility multiplier values. If the keyword is not present then the overburden pressure is taken to be zero. if the OVERBURD is specified, the ROCKTAB table tabulate the compaction multipliers against the effective fluid pressure instead. If the overburden pressure is greater than the fluid pressure, as it usually will be, then the effective fluid pressure (or stress) will be negative. This leads to non-intuitive compaction tables with negative effective pressures in the first column. Figure 102 displays the typical rock overburden pressure table and plot.

Figure 102 Rock Overburden Pressure Table and Plot

3- ROCKTSIG (Rock compaction data tables in dual porosity runs) Table:

This table consists two columns of the pressure and the sigma multiplier, and only is available in dual models. The pressure values should increase monotonically down the column, unless the "rock effective stress" option has been used, in which case the values should decrease monotonically down the column. The sigma values should be level or increasing down the column. Each row must be complete, containing an entry in every column of the table. The Figure 103 displays the rock ROCKTSIG table and corresponding plot.

Figure 103 Rock Compaction Data in Dual Porosity Table and Plot

Rock Plot Setting:

User can use right click on the plot to see setting. Setting includes save, fit data, plot property. The zoom action is performed using mouse wheel. Clicking on "Properties" leads user to the "Chart Properties" window. In this window, user can edit title, description and related fonts, axis setting like axis minimum and maximum values, scales, marker types, colors and etc.

3-2-3- Saturation Region Data

In these section types of Saturation data for oil, water and gas are selected. There are six families of the saturation data in this section, which user can select each of the based on the model system phase (Figure 104). For defining saturation region or editing the existed one, the "Saturation Region Data" button must be clicked. This dialog includes "Saturation Region" and "Hysteresis" tabs. There are two tables of "saturation regions" and "table list" in the "Saturation Regions" tab. The upper one is for defining of the

desired regions and another displays saturation tables. All add, remove, edit and naming procedure are same as <u>section 3-2-1</u>.

Saturation Data Management				
Saturation Data Management				
Saturation Regions Hysteresis				
Saturation Regions Hysteresis	NOTE: The model system phase is: Oil and Water Saturation Family Oil:SOF3 Water:SWFN Gas:SGFN Oil:SOF3 Water:SWFN Gas:SANY Oil:SOF3 Water:SWFN Gas:ANY Oil:SOF3 Water:SWFN Gas:ANY Oil:SOF3 Water:SWFN Gas:ANY Oil:SOF3 Water:SWFN Gas:ANY Oil:SOF4 Water:SWFN Gas:ANY Oil:NONE Water:SWFN Gas:ANY Name Value Unit	JFunc Type: Min Oil Saturation Data:	NONE	
Field 0.00		Import Eclipse 5	CAL Cancel OK	

Figure 104- Saturation Data Management

Family 1: Oil: SOF3, Water: SWFN, Gas: SGFN

SOF3 Table:

There are three column for each SOF3 (Oil saturation functions (three-phase)) table. The first column includes the oil saturation. Its values should be between 0 and 1 and should increase monotonically down the column. The maximum oil saturation should be equal to 1-Swco, where Swco is the connate water saturation. The second column includes corresponding oil relative permeability for regions where only oil and water are present. Its values should be between 0 and 1 and should be level or increasing down the column. The first value in the column must be 0. The third column consists the corresponding oil relative permeability for regions where only oil, gas and connate water are present. Values should be between 0 and 1 and should be level or increasing down the column. The first value in the column must be 0.

Default values (represented by 1*, or empty) may be inserted as required in columns 2 and 3. When the table is read in, defaults are replaced by values computed by linear interpolation. Each table must contain at least two rows. Each row must be complete, containing an entry in every column of the table. The maximum values in columns 2 and 3 both represent the oil relative permeability at maximum oil saturation and should therefore have the same value. Figure 105 displays the SOF3 table and plot.

2 Saturation Data Management							
Saturation Data Management							
Saturation Regions Hysteresis							
+ - ab Saturation Region		NOTE: Satur	The model s ation Family	system phase is	: Oil and Water		
1 Saturation Data - 01	$\hat{\mathbf{r}}$	Oil/	Water/Gas Sat	uration Data:	Oil:SOF3 W	ter:SWFN Gas:SGFN JFunc Type: NONE	•
	₹ \$	Thre	e Phase Oil R	elative Permeab	ility Model	ECLIPSE Native Min Oil Saturation Data: NONE	
		Param	aters Table				
_		1	So (-) 0.0	Krow (-) 0.0	Krog (-) 0.0	SOF3	
		2	0.2	0.5	0.0		
Table List SGFN SWFN SOF3			0.78	1.0		0.9 0.7 0.6 0.4 0.3 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.4 0.5 0.6 0.7 0.6 0.7 0.6 0.7 0.6 0.7 0.6 0.7 0.6 0.7 0.6 0.7 0.6 0.7 0.6 0.7 0.7 0.6 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7	0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
Field • 0.00						Import Eclipse SCAL Cancel	ОК

Note: SOF3 should be used only in three phase cases.

Figure 105 SOF3 Saturation Table and Plots

<u>SWFN Table:</u>

Each SWFN (Water saturation functions) table consists of three columns of data. The first column includes the water saturation. Its values should be between 0 and 1 and should increase monotonically down the column. The second column consists the corresponding water relative permeability. For this column the values should be between 0 and 1 and should be level or increasing down the column. The first value in the column must be 0. The third column includes the corresponding water-oil capillary pressure. Values should be level or decreasing down the column in this column of the data. If SWATINIT property

is used, then the water-oil capillary pressures must be monotonically decreasing. In gaswater systems (that is with no active oil phase), the water-gas capillary pressure should be entered here.

Default values (represented by 1*, or empty) may be inserted as required in columns 2 and 3. When the table is read in, defaults are replaced by values computed by linear interpolation. Each table must contain at least two rows. Each row must be complete, containing an entry in every column of the table. The Figure 106 shows the SWFN table and plots.

Figure 106 SWFN Saturation table and Plots

SGFN Table:

Each table of SGFN (Gas saturation functions) consists of the three columns of data. The first column includes gas saturation. Values of this column should be between 0 and 1 and should increase monotonically down the column. The second column includes the corresponding gas relative permeability. Values should be between 0 and 1 and should be level or increasing down the column. The first value in the column must be 0. The last column includes corresponding oil-gas capillary pressure. Values should be level or

increasing down the column. In gas-water systems (that is no active oil phase), the gaswater capillary pressure is entered in the SWFN keyword. The oil-gas capillary pressure in SGFN should be set to zero.

Default values (represented by 1*, or empty) may be inserted as required in columns 2 and 3. When the table is read in, defaults are replaced by values computed by linear interpolation. Each table must contain at least two rows. Each row must be complete, containing an entry in every column of the table. Figure 107 displays the SGFN table and plots.

Note: In gas-water runs the gas and water saturation functions may be input together using the SGWFN keyword as an alternative to using both SGFN and SWFN.

Figure 107 SGFN Saturation Table and Plots

Family 2: Oil: NONE, Water: SWOF, Gas: SGOF

<u>SWOF Table:</u>

The SWOF (Water / oil saturation functions versus water saturation) table may be used in runs containing both oil and water as active phases, to input tables of water relative

permeability, oil-in-water relative permeability and water-oil capillary pressure as functions of the water saturation. If gas is also an active phase in the run, the gas/oil saturation functions must be input with either keyword SGOF or SLGOF. Each SWOF table consists of four columns of data. The first column includes water saturation values. Values should be between 0 and 1 and should increase monotonically down the column. The first value in the column is interpreted as the connate water saturation. The last value in the column is interpreted as Sw = 1-Sor. The second column consists of the corresponding water relative permeability. Values should be between 0 and 1 and should be level or increasing down the column. The first value in the column must be 0 (zero). The third column includes the corresponding oil relative permeability when only oil and water are present. Values should be between 0 and 1 and should be level or decreasing down the column. If gas is also present in the run, the first value in the column (that is krow at So = Somax = 1-Swco) must be the same as krowg at Sg = 0 set in keyword SGOF or SLGOF. The last value in the column must be zero. Tha four and last column includes the corresponding water-oil capillary pressure. Values should be level or decreasing down the column.

Default values (represented by 1*, or empty) may be inserted as required in columns 2, 3 and 4. When the table is read in, defaults are replaced by values computed by linear interpolation. Each table must contain at least two rows. Each row must be complete, containing an entry in every column of the table. The Figure 108 shows the SWOF table and plots.

Saturation Data Managemen Saturation Data Management Saturation Regions Hysteresis + - ab NOTE: The model system phase is: Oil and Water Saturation Family Saturation Region Oil/Water/Gas Saturation Data: Oil:NONE Water:SWOF Gas:SGOF JFunc Type: NONE Three Phase Oil Relative Permeability Model ECLIPSE Native Min Oil Saturation Data: NONE Paramaters Table Sw (-) Krw (-) Krow (-) Pcow (psi) SWOF 0.4 0.125 0.0048 2 3 6.0 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 4 0.8 0.8 0.7 0.6 0.5 0.4 0.3 5.0 5 4.0 -Pcow (psi) 6 3.0 2.0 Krow Кī Table Lis 0.2 1.0 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Sw (-) Pcov • 0.00 Import Eclipse SCAL Cancel Field OK

Figure 108 SWOF Saturation Table and Plots

<u>SGOF Table:</u>

The SGOF (Gas / oil saturation functions versus gas saturation) may be used in runs containing both oil and gas as active phases, to input tables of gas relative permeability, oil-in-gas relative permeability and oil-gas capillary pressure as functions of the gas saturation. If water is also an active phase in the run, the water/oil saturation functions must be input with SWOF. Each table consists of the four columns of data. The first column includes the gas saturation. Its values should be between 0 and 1 and should increase monotonically down the column. The first value in the column must be zero. The second column includes the corresponding gas relative permeability. The second column values should be between 0 and 1 and should be level or increasing down the column. The first value in the column. The first value in the column. Its values should be between 0 and 1 and should be level or increasing down the column. The first value in the column consists the corresponding oil relative permeability when oil, gas and connate water are present. Its values should be between 0 and 1 and should be level or decreasing down the column. If water is present in the run, the first value in the column (krog at Sg = 0) must be the same as the

first value in the krow column in keyword SWOF (that is krow at So = 1-Swco). The last value in the column must be zero. The fourth column is the corresponding oil-gas capillary pressure. Values should be level or increasing down the column.

Default values (represented by 1*, or empty) may be inserted as required in columns 2, 3 and 4. When the table is read in, defaults are replaced by values computed by linear interpolation. Each table must contain at least two rows. Each row must be complete, containing an entry in every column of the table. The Figure 109 displays the SGOF table and plots.

Figure 109 SGOF Saturation table and Plots

Family 3: Oil: NONE, Water: SWOF, Gas: SLGOF

<u>SWOF Table:</u>

The SWOF (Water / oil saturation functions versus water saturation) table may be used in runs containing both oil and water as active phases, to input tables of water relative permeability, oil-in-water relative permeability and water-oil capillary pressure as functions of the water saturation. If gas is also an active phase in the run, the gas/oil

saturation functions must be input with either keyword SGOF or SLGOF. Each SWOF table consists of four columns of data. The first column includes water saturation values. Values should be between 0 and 1 and should increase monotonically down the column. The first value in the column is interpreted as the connate water saturation. The last value in the column is interpreted as Sw = 1-Sor. The second column consists of the corresponding water relative permeability. Values should be between 0 and 1 and should be level or increasing down the column. The first value in the column includes the corresponding oil relative permeability when only oil and water are present. Values should be between 0 and 1 and should be level or decreasing down the column. If gas is also present in the run, the first value in the column (that is krow at So = Somax = 1-Swco) must be the same as krowg at Sg = 0 set in keyword SGOF or SLGOF. The last value in the column must be zero. Tha four and last column includes the corresponding water saturation the column includes the column must be zero. The four and last column (that is krow at So = Somax = 1-Swco) must be the same as known at Sg = 0 set in keyword SGOF or SLGOF. The last value in the column must be zero. Tha four and last column includes the corresponding water-oil capillary pressure. Values should be level or decreasing down the column.

Default values (represented by 1*, or empty) may be inserted as required in columns 2, 3 and 4. When the table is read in, defaults are replaced by values computed by linear interpolation. Each table must contain at least two rows. Each row must be complete, containing an entry in every column of the table.

<u>SLGOF Table:</u>

The SLGOF (Gas / oil saturation functions versus liquid saturation) may be used in runs containing both oil and gas as active phases, to input tables of gas relative permeability, oil-in-gas relative permeability and oil-gas capillary pressure as functions of the liquid saturation. If water is also an active phase in the run, the water/oil saturation functions must be input with SWOF. Each table consists of the four columns of data. The first column includes the liquid saturation. Values should be between 0 and 1 and should increase monotonically down the column. The first value in the column is interpreted as S1=Swco+Sor (Swco is the connate water saturation, the first saturation value in the SWOF table, or zero if there is no water in the run). The last value must be 1.0, which corresponds to a gas saturation of zero. The second column includes the corresponding gas relative permeability. Its values should be between 0 and 1 and should be level or decreasing down the column. The last value in the column must be zero. The values of the third column which includes the oil relative permeability when oil, gas and connate water are present should be between 0 and 1 and should be level or increasing down the

column. If water is present in the run, the last value in the column (krog at Sg=0) must be the same as the first value in the krow column in keyword SWOF (that is krow at So=1–Swco). The first value in the column must be zero. There are oil capillary pressure values in the fourth column of the SLGOF table. Its values should be level or decreasing down the column.

Default values (represented by 1*, or empty) may be inserted as required in columns 2, 3 and 4. When the table is read in, defaults are replaced by values computed by linear interpolation. Each table must contain at least two rows. Each row must be complete, containing an entry in every column of the table. The SLGOF table and plots are displayed in Figure 110.

2 Saturation Data Management						
Saturation Data Management						
Saturation Regions Hysteresis						
+ — ab	NC	TE: The model	system phase is	s: Oil and Wate	r	
Saturation Region	s Sa	aturation Family				
1 Saturation Data - 01	. 0	0il/Water/Gas Sa	turation Data:	Oil:NON	E Water:SWOF G	s:SLGOF JFunc Type: NONE
	T	'hree Phase Oil F	elative Permeab	ility Model	ECLIPSE	Vative Min Oil Saturation Data: NONE
	Pa	ramaters Table				
		SI (-)	Krg (-)	Krog (-)	Pcgo (psi)	SLGOF
	1	0.22	1.0		3.9	
		2 0.3	0.8125		3.5	
		0.4	0.5	0.0	1.0	
		• 0.9	0.022	0.33	0.5	3.0 0.7 0.7
		5 0.96			0.2	
Table List		7 1.0			0.0	
SWOF						
		_				
		_				
	-	_				0.3 0.4 0.5 0.6 0.7 0.8 0.9
						SI (-)
						● Krg
						Krog
						- rugo
Field V.00						Import Eclipse SCAL Cancel OK

Figure 110 SLGOF Saturation Table and Plots

Family 4: Oil: SOF3, Water: SWFN, Gas: NONE

<u>SOF3 Table:</u>

There are three column for each SOF3 (Oil saturation functions (three-phase)) table. The first column includes the oil saturation. Its values should be between 0 and 1 and should

increase monotonically down the column. The maximum oil saturation should be equal to 1-Swco, where Swco is the connate water saturation. The second column includes corresponding oil relative permeability for regions where only oil and water are present. Its values should be between 0 and 1 and should be level or increasing down the column. The first value in the column must be 0. The third column consists the corresponding oil relative permeability for regions where only oil, gas and connate water are present. Values should be between 0 and 1 and should be level or increasing down the column. The first value in the column must be 0.

Default values (represented by 1^{*}, or empty) may be inserted as required in columns 2 and 3. When the table is read in, defaults are replaced by values computed by linear interpolation. Each table must contain at least two rows. Each row must be complete, containing an entry in every column of the table. The maximum values in columns 2 and 3 both represent the oil relative permeability at maximum oil saturation and should therefore have the same value.

Note: SOF3 should be used only in three phase cases.

<u>SWFN Table:</u>

Each SWFN (Water saturation functions) table consists of three columns of data. The first column includes the water saturation. Its values should be between 0 and 1 and should increase monotonically down the column. The second column consists the corresponding water relative permeability. For this column the values should be between 0 and 1 and should be level or increasing down the column. The first value in the column must be 0. The third column includes the corresponding water-oil capillary pressure. Values should be level or decreasing down the column in this column of the data. If SWATINIT property is used, then the water-oil capillary pressures must be monotonically decreasing. In gaswater systems (that is with no active oil phase), the water-gas capillary pressure should be entered here.

Default values (represented by 1*, or empty) may be inserted as required in columns 2 and 3. When the table is read in, defaults are replaced by values computed by linear interpolation. Each table must contain at least two rows. Each row must be complete, containing an entry in every column of the table.

Family 5: Oil: SOF2, Water: SWFN, Gas: NONE

SOF2 Table:

The SOF2 (Oil saturation functions (two-phase)) table is used to specify the relative permeability of oil in two-phase models (oil-gas or oil-water). SOF2 should not be used to specify the oil's relative permeability in three-phase systems. Each SOF2 table consists of the two columns of data. The first column includes oil saturation data. Its values should be between 0 and 1 and should increase monotonically down the column. The second column includes the corresponding relative permeability kro. Its values should be between 0 and 1 and should be level or increasing down the column. The first value in the column must be 0.

Default values (represented by 1*, or empty) may be inserted as required in columns 2. When the table is read in, defaults are replaced by values computed by linear interpolation. Each table must contain at least two rows. Each row must be complete, containing an entry in every column of the table. The Figure 111 displays the SOF2 table and plot.

Note: SOF2 should be used only in two phase cases.

<u>SWFN Table:</u>

Each SWFN (Water saturation functions) table consists of three columns of data. The first column includes the water saturation. Its values should be between 0 and 1 and should increase monotonically down the column. The second column consists the corresponding water relative permeability. For this column the values should be between 0 and 1 and should be level or increasing down the column. The first value in the column must be 0. The third column includes the corresponding water-oil capillary pressure. Values should be level or decreasing down the column in this column of the data. If SWATINIT property is used, then the water-oil capillary pressures must be monotonically decreasing. In gaswater systems (that is with no active oil phase), the water-gas capillary pressure should be entered here.

Default values (represented by 1*, or empty) may be inserted as required in columns 2 and 3. When the table is read in, defaults are replaced by values computed by linear interpolation. Each table must contain at least two rows. Each row must be complete, containing an entry in every column of the table.

Family 6: Oil: NONE, Water: SWFN, Gas: NONE

<u>SWFN Table:</u>

Each SWFN (Water saturation functions) table consists of three columns of data. The first column includes the water saturation. Its values should be between 0 and 1 and should increase monotonically down the column. The second column consists the corresponding water relative permeability. For this column the values should be between 0 and 1 and should be level or increasing down the column. The first value in the column must be 0. The third column includes the corresponding water-oil capillary pressure. Values should be level or decreasing down the column in this column of the data. If SWATINIT property is used, then the water-oil capillary pressures must be monotonically decreasing. In gaswater systems (that is with no active oil phase), the water-gas capillary pressure should be entered here.

Default values (represented by 1*, or empty) may be inserted as required in columns 2 and 3. When the table is read in, defaults are replaced by values computed by linear interpolation. Each table must contain at least two rows. Each row must be complete, containing an entry in every column of the table.

Minimum Oil Saturation Data:

This field is activated when three phase oil relative permeability model set to the STONE-1. Three ways is available for defining this item:

- 1- NONE: needs no data.
- 2- SOMGAS: needs minimum oil saturation versus gas saturation table.
- 3- SOMWAT: needs minimum oil saturation versus water saturation table.

Moving mouse pointer on the plotted curves displays the related values and conditions (snapped or interpolated). User can use mouse right click on the plot to see setting which includes save, fit data, plot property. The zoom action is performed using mouse wheel. Clicking on "Properties" leads user to the "Chart Properties" window. In this window, User can edit title, description and related fonts, axis setting like axis minimum and maximum values, scales, marker types, colors and etc. If user wants to zoom in or out just one of the curves, he/she can click on the related axis and uses mouse wheel. There is an importer button which can import the Eclipse SCAL data to this window. User can also, use copy, paste, insert and delete some rows same as <u>section 3-2-1</u>.

J-FUNCTION:

This option can be used to activate the Leverett J-function option, which scales the water-oil and/or gasoil capillary pressure functions according to the grid block porosity and permeability. The option may only be used if end-point scaling is active. This option is for using J-function instead of capillary pressure in saturation functions for gas, water or both:

- Selecting "WATER" in JFunc combo box, requests the J-function option for the water-oil capillary pressure only.
- Selecting "GAS" in JFunc combo box, requests the J-function option for the gas-oil capillary pressure only.
- Selecting "BOTH" in JFunc combo box, requests the J-function option for both water-oil and gas-oil capillary pressure.

The following parameters (Figure 112) are added to the parameter tab in case of activating JFunc option:

• Oil-water or oil-gas surface tension,

- The oil-water surface tension must be supplied if the first data item is set to either WATER or BOTH.
- The oil-gas surface tension must be supplied if the first data item is set to either GAS or BOTH.
- JFunc power for the porosity term
- JFunc power for the permeability term
- JFunc Permeability Direction:
 - XY The average of PERMX and PERMY values
 - o X PERMX value
 - o Y PERMY value
 - o Z PERMZ value

The J-function option scales the capillary pressure functions according to the rock porosity and permeability. The dimensionless J-function is entered in place of the capillary pressure function, specified using either the SWFN, SGFN or the SWOF, SGOF, SLGOF family of saturation data.

Note: If the SWATINIT property is used in conjunction with the JFunc option, then the Jfunction scaling is ignored in regions of the field where the SWATINIT array has been set, and will use PPCWMAX instead if set. If the PCW is used in conjunction with the JFunc, the input PCW array will be ignored when the J-function selects the water-oil capillary pressure. Similarly, if the PCG is input, the input PCG array is ignored when the J-function selects the gas-oil capillary pressure.

💐 Saturation Data Management							
Saturation Data Management							
Saturation Regions Hysteresis							
+ − ab Saturation Region 1 Saturation Data - 01 ↑ ↓	NOTE: The model system phas Saturation Family Oil/Water/Gas Saturation Data Three Phase Oil Relative Perme	e is: Oil and Water Oil:SOF2 Wat	er:SWFN Gas	ANY	JFunc Type: Min Oil Saturation Data:	BOTH	•
	Paramaters Table						
	Saturation Data Parameters:						
	Name	Value	Unit	1			
	Oil-Water Surface Tension	0.0	dyne/cm				
	Oil-Gas Surface Tension	0.0	dyne/cm				
	JFunc Permeability Power	0.5	-				
	JFunc Porosity Power	0.5	-				
	JFunc Permeability Direction	XY	-				
Table Lict							
SWEN JEUNC							
SOF2							
3012							
Field • 0.00					Import Eclips	e SCAL Cancel	ОК

Figure 112 J-Function Corresponding Parameters Tab

There is a hysteresis tab in saturation data dialog which is shown in Figure 113. In this tab, user can define hysteresis type as capillary, relative permeability or both of them.

aturation Data Management			
aturation Data Management			
aturation Regions Hysteresis			
V Hysteresis Ontion			
Capillary Curvature Parameter:		0.1	
Hysteresis Type:		вотн	•
Relative Permeability Flag:		WATER_CARLSON_DRAINAGE	€ ▼
Scanning Shape:		RETR	•
Oil vs. Gas Wetting Phase:		OIL	•
Field	Import Eclipse SCAL	Cancel	ок
Field • 0.00	Import Eclipse SCAL	Cancel	ок
Field • 0.00	Import Eclipse SCAL	Cancel Cancel	ОК

3-2-4- Equilibration Region Data

Clicking on the "Equilibration Region Data" button, user can define equilibration regions. The equilibration region window, which is shown in Figure 114, includes two tabs of "Equilibration Regions" and "Threshold Pressure".

"The "Equilibration Regions" tab includes two tabs of "Parameters" and "Tables". If there is active API Tracking option, a tab of API table is also added to this window.

Following parameters should be entered in equilibration window:

- Pb or Rs definition Method
- Pd or Rv Definition Method
- Reference Depth (since the RETINA default positive Z-direction is upward, all the depths are negative)
- Reference Pressure
- Water-Oil Contact Depth
- Gas-Oil contact Depth
- Oil-Water Capillary Pressure
- Gas-Oil Capillary Pressure
- Table Division Number
- Accuracy
- Performing Quiescence Correction

Bubble pressure (Pb) or solution gas ratio (Rs) should be defined versus depth (h) in related "Table" tab. In case of vaporized oil, the dew pressure (Pd) or vapor oil-gas ratio (Rv) should be defined also. All of the plot and table settings which are mentioned previously, are available also in this window.

There are four options for defining bubble pressure (Pb) or solution gas ratio (Rs):

- 1- Rs versus depth
- 2- Pb versus depth
- 3- Datum Depth = gas oil contact (GOC)
- 4- None (Dead oil)

There are four options for defining dew pressure (Pb) or vapor oil-gas ratio (Rv):

- 1- Rv versus depth
- 2- Pd versus depth
- 3- Datum Depth = gas oil contact (GOC)
- 4- None

💐 Equilibration Data Management				
Equilibration Data Management				ele
Equilibration Regions Threshold Pres	sure			
+ − ab	Parameters Table (Rs vs. Depth) Table	able (Rv vs. Depth)		
Equilibration Region	Pb or Rs Definition Method:	Rs vs. Depth 🔹		
1 Equilibration Data - 01	Pd or Rv Definition Method:	Rv vs. Depth 🔹		
	Reference Depth:	-1600.0	m	
	Reference Pressure:	200.0	Bar	
	Water-Oil Contact:	-2600.0	m	
	Gas-Oil Contact:	-1600.0	m	
	P. cow at Water-Oil Contact:	0.0	Bar	
		0.0	Per	
	P_cgo at Gas-Oli Contact:	0.0	bar	
	Table Division Number:	100	-	
	Accuracy:	0	-	
	Perform Quiescence Correction			
	L			
Metric (ECLIPSE™) ▼ 0.00				Cancel OK

Figure 114- Equilibration Data Management

The water-oil contact depth, reference depth, gas-oil contact depth and Rs (Pb) tables are displayed in table tab (Figure 115). Similar tables are available for API versus depth if API tracking is activated, and for vaporized oil models.

"Threshold Pressure" tab which has been displayed in Figure 118 is used to define threshold pressure between two equilibration region connections.

Figure 115- Typical Rs vs. Depth

Requilibration Data Management	
Equilibration Data Management	<u>ele</u>
Equilibration Regions Threshold Pressure	
+ - ab Parameters Table (Rs vs. Depth) Table (Rv vs. Depth) Table (API vs. Depth)	
Equilibration Region h (m) OILAPI (-)	API vs. Depth
1 Equilibration Data - 01 1 -1600.0 41.0	
2 -3000.0 42.0	
3 -3500.0 42.2 -2000.0 -	
4 -4000.0 42.3 -2500.0	
-4500.0	······
41.2	41.4 41.6 41.8 42.0 42.2
	ΔΡΙ
API vs. Depth	
• woc	
Metric (ECLIPSE™) ▼ 0.00	Cancel OK

Figure 117- Typical API vs. Depth

oration Regions	Thresho	ld Pressure			
— ab		Connection Paramete	rs:		
Name	~	Name	Value	Uni	
onnection	1°	From Region	Equilibration Data 🔫		
	- 47	To Region	Equilibration Data	÷ -	
	~	Threshold Pressure	500.0	Bar	
	<u> </u>				
	_				
	_				
	_				
	_				
	_				
rsible Threshold I	Pressure	s Between Equilibration	Regions 🔽		

Figure 118- Typical Threshold Pressure Tab

3-2-5- End Point Scaling Region Data

The button of "End point Scaling Region Data" will be used to define end point scaling. At first scaling type must be selected using "End Point Scaling Type: dropdown list (Figure 119). The EPS type can be either "Two points" or "Three points". If you select "None" a message of "End point scaling is disabled" is displayed and no scaling is performed. If you

💐 End Point Scaling Data Management	
End Point Scaling Data Management	+
End-Point Scaling Type: None Two Point End Point Scaling is disabled. Three Point None	
Field 0.00	Cancel OK

Figure 119- Define an End Point Scaling Type

If user chooses one of the two or three points scaling the Figure of 120 is opened. This window includes tables, parameters and EPS data types which are describe here.

For adding and removing some EPS regions, the + and - are used, respectively. The procedure is same as <u>section 3-2-1</u>. User can move defined EPS regions using navigating arrows. There is a button of **ab** in the EPS data management window, which is used to auto naming of the defined regions.

(2) End Point Scaling Data Management	
End Point Scaling Data Management	•
End-Point Scaling Type: Two Point	•
I End Point Scaling Region 1 EPS Data - 01 I EPS Data - 01 I Image: State S	End Point Scaling Data Types Saturation ENPTVD Relative Permeability ENKRVD Pc Saturation ENSPCV Capillary Pressum ENPCVD Parameters Tables End Point Scaling Data Parameters Residual Gas Saturation: 0.0 Connate Water Saturation: 0.0
Field • 0.00	Cancel OK

Figure 120- End Point Scaling Data Management

End Point Scaling Data Types

The types of the scaling such as saturation EPS type, relative permeability EPS type, capillary pressure EPS type Pc-saturation EPS type are presents in this section. Note that the EPS and Pc are abbreviations of End Point Scaling and Capillary Pressure, respectively.

ENPTVD (Saturation end-point versus depth tables):

This table specifies the depth variation of the saturation table end-points for different end-point scaling regions within the reservoir. The flow of each phase across each grid block face is calculated using transformed capillary pressure and relative permeability curves obtained by linearly scaling the tabulated curves between the end points specified using the ENPTVD table. The ENPTVD keyword also permits scaling of the relative permeability tables used in computing the flow of phases between grid cells and well connections and the scaling of capillary pressure functions in the equilibration algorithm.

Each table consists of 9 columns of data:

- 1- Depth values, the depth values should decrease monotonically down the column by default, since the positive z direction in RETINA is upward.
- 2- The corresponding values of the connate water saturation.
- 3- The corresponding values of the critical water saturation.
- 4- The corresponding values of the maximum water saturation.
- 5- The corresponding values of the connate gas saturation.
- 6- The corresponding values of the critical gas saturation.
- 7- The corresponding values of the maximum gas saturation.
- 8- The corresponding values of the critical oil-in-water saturation.
- 9- The corresponding values of the critical oil-in-gas saturation.

There must be the same number of entries in each column of a given table. Each saturation entry should be in the range 0.0 to 1.0 inclusive. If a saturation end-point is defaulted for all depth values, in a problem where a value could correctly be defined, then the end-point for each cell in the same scaling region will be the value in the appropriate saturation function table. However if a saturation end point is defaulted and the end-point has been defined at other depths, the end-point versus depth table will be filled in by linear interpolation within the table and constant extrapolation at the ends of the table. End point values entered for absent phases are ignored.

ENKRVD (Relative permeability end point versus depth tables):

Using this table you can specify the depth variation of the maximum relative permeability for the three phases. These tables complement the ENPTVD table, which specifies how the end point saturation values vary with depth.

Each ENKRVD table consists of eight columns of data:

- 1- Depth values, the depth values should decrease monotonically down the column by default, since the positive z direction in RETINA is upward.
- 2- The corresponding values of the maximum water relative permeability.
- 3- The corresponding values of the maximum gas relative permeability.
- 4- The corresponding values of the maximum oil relative permeability.
- 5- Water relative permeability at the critical oil (or gas) saturation.
- 6- Gas relative permeability at the critical oil (or water) saturation.
- 7- Oil relative permeability at the critical gas saturation.

8- Oil relative permeability at the critical water saturation

There must be the same number of entries in each column of a given table. If an end point is defaulted for all depth values, in a problem where a value could correctly be defined, then the end point for each cell in the same scaling region will be the value in the appropriate saturation function table. However if an end point is defaulted at a certain depth but has been defined at other depths, the end point vs. depth table will be 'filled in' by linear interpolation within the table and constant extrapolation at the ends of the table. End point values entered for absent phases are ignored.

ENSPCVD (Scaled saturations for Pc curves versus depth tables):

This table scales the connate water or gas end-point of the capillary pressure curves without scaling the corresponding oil relative permeability curves. The connate saturations are entered as functions of depth for different end-point scaling regions within the reservoir. The table can only be used when the end-point scaling option is active. Each table consists of 3 columns of data:

- 1- Depth values, the depth values should decrease monotonically down the column by default, since the positive z direction in RETINA is upward.
- 2- The corresponding values of connate gas saturation
- 3- The corresponding values of connate water saturation

There must be the same number of entries in each column of a given table. If a saturation end-point is defaulted for all depth values, in a problem where a value could correctly be defined, then the end-point for each cell in the same scaling region will be the value in the appropriate saturation function table. However, if a saturation end point is defaulted and the end-point has been defined at other depths, the end point versus depth table will be filled in by linear interpolation within the table and constant extrapolation at the ends of the table. End point values entered for absent phases are ignored.

ENPCVD (Maximum capillary pressure versus depth tables):

This table specifies the depth variation of the maximum capillary pressure for different end-point scaling regions within the reservoir. The table can only be used when the end-point scaling option is active. Each table consists of 3 columns of data:

- 1- Depth values, the depth values should decrease monotonically down the column by default, since the positive z direction in RETINA is upward.
- 2- The corresponding values of the maximum gas-oil capillary pressure
- 3- The corresponding values of the maximum water-oil capillary pressure

There must be the same number of entries in each column of a given table. If a maximum capillary pressure is defaulted for all depth values, in a problem where a value could correctly be defined, then the end point for each cell in the same scaling region will be the value in the appropriate saturation function table. However, if a maximum capillary pressure is defaulted and the end-point has been defined at other depths, the endpoint versus depth table will be filled in by linear interpolation within the table and constant extrapolation at the ends of the table. End-point values entered for absent phases are ignored.

Parameters/Tables

As you seen in Figure 120, there are two tabs of "Parameters" and "Tables" in the end point scaling dialog. User can enter the data of residual saturations of oil and gas and connate water saturation using the parameter tab. In the other tab (i.e. tables), the tables are displayed. "Tables" tab includes data of the EPS. For example Right clicking on the tables, user will be able to perform copy, paste, insert or delete table row. You can press "Enter" key for same action of insert row. There is plot of the data in this tab. The top list of the plot section shows the variables for plotting. Moving mouse pointer on the plotted curves will display the related values and conditions (snapped or interpolated).

3-2-6- Aquifer Data

Aquifer is defined using "Aquifer Data" button. Afterward the window of the Figure 121 is opened. There is an importer button which is used for import Eclipse aquifer data. The Aquifer Data window consists of 3 main sections: Aquifers, Aquifer Data and Aquifer Recurrent Parameters. Types of the Aquifers and related tables are defined in the "Aquifers" section. For defining a new Aquifer, + button is used (similarly - is used for removing a defined Aquifer). There are three types of aquifer to define in this window:

- Fetkovich Aquifer
- Carter-Tracy Aquifer
- Numerical Aquifer

Aquifers Data						
Aquifers Data						****
Aquifers + -	Aquifer Data + 🔻 —	Aquifer F	lecurrent f	Parameters:		
Aquifer Name Type	Defined Dates: 2008/01/01	▼ Name	Value	Unit		
	Aquifer Recurrents					
+ - Aquifer Tables ^ 1 ECL(2010): rd=inf						
2 rd=2 3 rd=4 4 rd=8 5 rd=10 •						
Field O.00		Import Eclipse Aq	uifer Data	Cano	el	ОК

Figure 121- Aquifer Data

Fetkovich Aquifer:

User can define this type of aquifer using \textcircled button and selecting "Fetkovich Aquifer". Afterward an Aquifer named"Aquifer-1" with Type of "Fetkovich" is inserted to the table. For renaming this aquifer, you can double click on it. Clicking on the aquifer name you can see the Aquifer Tables and Data (Figure 122).

There are some pre-defined aquifer tables, also you can click on + and define a new one using dimensionless time and pressure (Figure 123). Note that the dimensionless time must be monotonically increasing. All the table and plot settings are same as previous sections.

The "Aquifer Data" section is used for entering aquifer data. So, after selection a desired date (time) for aquifer definition and clicking on the + button, two options of "Add Aquifer Definitions" and "Add Aquifer Connection" are displayed. User must use both of these options to define aquifer.

Selecting "Add Aquifer Definition" the keyword of AQUFET is displayed. AQUFET needs following data which are displayed in the "Aquifer Recurrent Parameters" (Figure 124);

- Datum Depth
- Datum Depth initial Pressure
- Initial Water volume
- Total Compressibility (Rock + Water)
- Aquifer Productivity Index
- PVT Region

🍭 Aquifers Data					
Aquifers Data					****
Aquifers + ▼ -	Aquifer Data + -	Aquifer R	lecurrent Paramet	ers:	
Aquifer Name Type	Defined Dates: 2008/01/01	▼ Name	Value	Unit	
Aquifer - 1 Fetkovich	Aquifer Recurrents				
	Definitions AQUEFT 2008/01/01				
	▲ Connections				
	Aquifer Connection - 1				
+ -					
Aquifer Tables					
1 ECL(2010): rd=Inr					
3 rd=4					
4 rd=8					
Field O.00	In	nport Eclipse Aqu	ifer Data	Cancel	ОК

Figure 122- Fetkovich Aquifer Definition

quifers Data					×
Aquifers		Aqu	ifer Table Data		Dimoneionloss prossuro ve Dimoneionloss Tir
+ • -	1- 1		Dimensionless Lime (-)	Dimensionless Pressure (-)	Dimensioness pressure vs. Dimensioness m
Aquifer Name	Type	1	0.05	0.220076	1
iquirer - 1	Telkovich	2	0.05	0.230070	2.02065E+07 =
		3	0.15	0.314245	_
		4	0.15	0.373150	1.5E+07 -
		5	0.2	0.424239	Se -
		6	0.25	0.403941	1 0E+07
		/	0.3	0.502432	
		8	0.4	0.504024	5 0E+06
		9	0.5	0.010809	
		10	0.6	0.00221	E 0 108107
		11	1.0	0.802149	0.108107
		12	2.0	1.02222	
+ -		13	5.0	1.36254	0 7
Aquifer Tab	les	<u>^ 14</u>	7.0	1.49986	· · · · · · · · · · · · · · · · · · ·
rd=2		15	10.0	1.65112	
rd=4		= 16	20.0	1.96676	Dimensionless Time
rd=8		17	30.0	2.19374	Dimensionless second Dimensionless Time
rd=10		18	50.0	2.60508	Dimensionless pressure vs. Dimensionless Time
rd-20		· 19	100.0	3.61501	•
ield	- 0.00				

aquifers Data				_ D X		
Aquifers Data				***		
Aquifers + -	Aquifer Data + - Aquifer Recurrent Parameters:					
Aquifer Name Type	Defined Dates: 2008/01/01	Name	Value	Unit		
Aquifer - 1 Fetkovich		Datum Depth	-3000.0	ft		
	Aquifer Recurrents	Initial Pressure at the Datum Depth	2000.0	psi		
	⊿ Definitions	Initial Water Volume	1000.0	STB		
	AQUFET 2008/01/01	Total (Rock + Water) Compressibility	1.0E-06	in²/lb		
	Connections	Aquifer Productivity Index	*	STB/day.psi		
	Aquifer Connection - 1	PVT Region	PVT Data - 01 -	-		
+ -						
Aquifer Tables 2 rd=2 3 rd=4 4 rd=8 5 rd=10 6 rd=20						
Field O.00	Import	Eclipse Aquifer Data Cancel		ОК		

Figure 124- Fetkovich Aquifer Recurrent Parameters

There are some default values for aquifer recurrent parameters (yellow fields filed by *); user can see the values of the default by right clicking on the window and select "Show Default Values". This option is available in all of the RETNA windows.

For defining any new connection for each aquifer, "Add Aquifer Connection" option is used, in which, the lower and upper indices in three directions, connection face, influx coefficient and influx coefficient multiplier should be entered. There is a checkbox which user can check it only when wants to allow aquifer connection to active neighbor one. Note that the above procedure must be repeated for defining a new aquifer connection.

2 Aquifers Data				_ O X
Aquifers Data				***
Aquifers + ▼ -	Aquifer Data + ▼ —	Aquifer Recurrent Parameters:		
Aquifer Name Type	Defined Dates: 2008/01/01	Name	Value	Unit
Aquifer - 1 Fetkovich		Lower I	1	-
	Aquifer Recurrents	Upper I	2	-
	⊿ Definitions	Lower J	1	-
	AQUFET 2008/01/01	Upper J	3	-
	Connections	Lower K	1	-
	Aquifer Connection - 1	Upper K	5	-
		Connecting Face	I-	v -
		Influx Coefficient	*	ft ²
		Influx Coefficient Multiplier	*	-
		Allow Connection to Active Neighbor	V	-
+ -				
Aquifer Tables				
2 rd=2				
2 rd-4				
4 10=0				
5 rd=10				
6 rd-20				
Field	Import E	clipse Aquifer Data Cancel		ОК

Figure 125- Aquifer Connections

Carter-Tracy Aquifer:

The Carter-Tracy aquifer definition procedure is same as Fetkovich aquifer. The only difference is the "Aquifer Recurrent Parameters" data (Figure 126). In the Carter-Tracy aquifer the following data are necessary:

- Datum Depth
- Initial Pressure
- Aquifer Permeability
- Aquifer Porosity

- Total Compressibility
- Radius
- Aquifer Thickness
- PVT Region
- Aquifer Table

2 Aquifers Data				- C X
Aquifers Data				****
Aquifers + ▼ -	Aquifer Data + ▼ −	Aquifer Recurrent Parameters:		
Aquifer Name Type	Defined Dates: 2008/01/01	■ Name	Value	Unit
Aquifer - 1 Carter Tracy		Datum Depth	*	ft
	Aquifer Recurrents	Initial Presssure	*	psi
	Definitions	Permeability of the Aquifer	*	mDarcy
	AQUCT 2008/01/01	Porosity of the Aquifer	*	-
	Connections	Total (Rock + Water) Compressibility	*	in²/lb
		Radius	*	ft
		Aquifer Thickness	*	ft
		Angle Influence	*	deg
		PVT Region	•	-
		Aquifer Table	•	-
+ -				
Aquifer Tables				
2 rd=2				
2 10-2				
3 10-4				
4 rd=8				
5 rd=10				
▲ rd-20				
Field O.00	Impo	ort Eclipse Aquifer Data Cancel		ОК

Figure 126- Carter-Tracy Aquifer

Numerical Aquifer:

The numerical aquifer definition procedure also is same as two previously mentioned aquifers. The only difference is the "Aquifer Recurrent Parameters" data (Figure 127). Following information are necessary for defining a numerical aquifer:

- Coordinates of 3 main directions of X, Y, Z for Aquifer Head
- Cross sectional Area
- Length of Aquifer
- Porosity
- Permeability
- Aquifer Depth
- Initial Pressure

- PVT Region
- Saturation Region

aquifers Data							
Aquifers Data							****
Aquifers + ▼ -		Aquifer Data + ▼ −		Aquifer Recurrent Parar	neters:		
Aquifer Name	Туре	Defined Dates: 2008/01/01		Name	Value	Unit	
Aquifer - 1	Carter Tracy			I Coordinate	*	-	
Aquifer - 2	Numerical	Aquifer Recurrents		J Coordinate	*	-	
		Definitions		K Coordinate	*	-	
		AQUNUM 2008/01/0	1	Cross-Sectional Area		ft²	
		Connections		Length		ft	
				Porosity	*	-	
				Permeability		mDarcy	
				Aquifer Depth	*	ft	
				Initial Pressure	*	psi	
				PVT Region		• -	
				Saturation Region		• -	
+ -							
Aquifer Tabl	es 🔺						
2 rd=2							
2 rd=4	-						
A rd=8							
4 10-0							
5 rd=10							
6 I rd-20							
Field	▼ 0.00		Import E	clipse Aquifer Data	Cancel		ОК

Figure 127- Numerical Aquifer Definition

3-3- Using Scheduling Data Tab

This tab includes steps, well and group scheduling, and recurrent data, which will be explained in following sections.

3-3-1-Date Manager

The button of "Open Date Manager" is used to manage time and date. User can define new steps by entering "Step Number", "Step Length" and time after start date.

Note: "Add Dates" button must be pressed for adding desired dates to provided list.

🥘 D.	ate Manager					
Date	Manager					
						[15]
Date	e List:				Tuesday Eshrusay 01 2005	
	List of Dates	Relative Date (day)	Step Length (day)	Has Keyword	Tuesday , Pebruary 01, 2005	· · ·
1	2005/02/01	0.0	Start Date	*	Time after start date: 0	day 🔻
2	2006/02/01	365.0	365.0	*	Step Number:	4 -
3	2007/02/01	730.0	365.0	*	Step Number.	4
4	2008/02/01	1095.0	365.0	*	Step Length:	365 day
5	2009/02/01	1461.0	366.0			Add Dates
						Add Dates
Me	etric (Eclipse) 🔻	0.00 Imp	ort Eclipse Dates/Step	s Remov	e Date Cancel	ОК

Figure 128- Date Manager

For defining new dates, the step number and length and the time after start date must be defined by user. Note that the start time may be different from project start time, if you click on any row of the date list, the related date will be set to start date. The unit of "Time after start date" can be selected from existed list.

There is a calendar in the right side of the date (Figure 129). User can select a desired date using calendar. The "Today" button will go to the current date. You can select the year and month using navigating arrows of calendar.

User can use *Ctrl* or *Shift* keys to select multiple dates for deleting or inserting. If you try to remove some dates, the warning message asking "Are you Sure?" will be displayed (Figure 130).

Tuesday , February 01, 2005								
4	February, 2005							
Sun	Mon	Tue	Wed	Thu	Fri	Sat		
30	31	1	2	3	4	5		
6	7	8	9	10	11	12		
13	14	15	16	17	18	19		
20	21	22	23	24	25	26		
27	28	1	2	3	4	5		
6	7	8	9	10	11	12		
	0		Foday:	8/15/	2016			

Figure 129- Select Date, Using Calendar

🍳 Da	ate Manager		
Date	e Manager		[₩] ″ 15
Date	List:	,	
	List of Dates	Relative Date	Are You Sure?
1	2005/02/01	0.0	Are You Sure?
2	2006/02/01	365.0	
3	2007/02/01	730.0	
4	2008/02/01	1095.0	day
5	2009/02/01	1461.0	Are you want to remove date(s)? 2009/02/01 2007/02/01 Cancel OK
Me	tric (Eclipse) 🔻	• 0.00	Import Eclipse Dates/Steps Remove Date OK

Figure 130- Warning Message of Remove Date

An error message is displayed if user wants to remove dates including keywords (Figure 131). In some cases the scheduling date/steps are numerous and have various time lengths which is an important issue, in such cases the dates/steps should be imported. So an importer of "Import Eclipse Dates/Steps" has been provided to resolve this issue. In

this importer, the start date and imported file unit must be defined by user before importing any files.

🔍 Da	ate Manager			
Date	e Manager	ſ	Errors, Warnings and Information	15
Date	List:	- 1	1 Messages: Errors:(1) Warnings:(0) Infos:(0)	
	List of Dates	Relative D		
1	2005/02/01	0.		-
2	2006/02/01	365	Several issues occurred during execution of the action.	
3	2007/02/01	730		
4	2008/02/01	109.	Action RemoveDate has Error(c)	day
5	2009/02/01	146		III Datas
			Action RemoveDate has Error(s)! Cannot remove date "2007/02/01" which has keyword(s)!	
			Metric (Eclipse) Close	J
Me	etric (Eclipse) 🔻	0.00	Import Eclipse Dates/Steps Remove Date Cancel	ОК

Figure 131- Removing Dates Including Keywords

3-3-2-Well Manager

User can start to define and manage wells using "Well Manager" button. Well manager window is shown on Figure 132.

💐 Well Manager						
Well Manager						
Wells + • -	Well Recurrents + -	Keyword	Info:			
Well Name	Defined Dates: 2005/02/01	_ Name	Value Unit			
	Keywords:					
	Definitions Constraints Perforations Others					
Wildcard	* These well recurrents are set from a wildcards. Tr parameters choose the corresponding wildcard.	o change rt Eclipse Well Data		Cancel	Validate First Step	• OK

Figure 132- Well Manager Window

You can use + button for defining a new well using one of the "Add Well" or "Add Multiple Wells" options. Choosing "Add Well" a unique well is added to the well list. The - button is used to remove selected well. If user choose "Add Multiple Wells" the Figure of 133 is, in which, the name and the number of the wells are entered by user. Clicking on "Generate" button produces the well with entered base name. The head point coordination of all wells (I, J) must be entered by user, while the wells are added. User can either paste or enter these values one by one.

Add Multiple wells		l								
Add Multiple Wells	dd Multiple Wells									
Defined Dates: 2005/02/01 -										
Base Name	Int From Int To		Generate							
Well Name I J	Well Name I J WELSPEC Data:									
	Name	Value	Unit							
	Reference depth for bottom hole pressure	*	m							
	Preferred phase for the well		T -							
	Drainage radius	*	m							
	Inflow equation flag	STD	v -							
	Instructions for automatic shut-in	SHUT	· -							
	Crossflow ability flag	YES	· -							
	Pressure table number	*	-							
	Type of density calculation	SEG								
	Fluids-in-place region number	*	-							
	Friction		-							
	Well model type	STD								
Metric (Eclipse) 🔹 0.00		Cancel	ОК							

Figure 133- Add Multiple Wells

In the "Add Multiple Completions" dialog the range of I, J, K's are entered. Clicking on the button of \bigcirc , the desired connections are added.

After adding wells the well recurrent data must be defined, there are 4 types of the keywords in the well recurrent section:

- Definition
- Constraints
- Perforations
- Others

1- Definition:

1-1- WELSPECS (General specification data for wells):

The WELSPECS introduces a new well, defining the position of the wellhead, its bottom hole reference depth and other specification data. Figure 134 displays the WELSPECS data. It consists of the following data:

- I-location of the well head or heel
 - For horizontal wells, this item defines the I-location of the heel of the well. If all connections are vertical the well can still connect with grid blocks having different I-locations.
- J-location of the well head or heel
 - For horizontal wells, this item defines the J-location of the heel of the well. If all connections are vertical the well can still connect with grid blocks having different J-locations.
- Reference depth for bottom hole pressure
 - This should be situated in the vicinity of the perforations. A recommended location is the topmost perforation of the well.
- Preferred phase for the well
 - OIL: The well is primarily an oil well
 - WATER: The well is primarily a water well
 - o GAS: The well is primarily a gas well
 - LIQ: May be used to output the oil + water phase P.I
 - TOTAL: May be used to output the oil + water + gas phase P.I
- Instructions for the automatic shut-in
 - STOP: Stop well above formation (allowing cross-flow)
 - SHUT: Isolate well from the formation.
 - The well can be automatically shut or stopped if a well or group economic limit, or a group flow limit, is violated.
- Cross-flow ability flag
 - YES: Cross flow allowed in the well
 - NO: Cross flow not allowed; the connections act as one-way valves, preventing flow if there is a reverse drawdown
- Type of density calculation

- SEG: Segmented density calculation. The flowing mixture density is calculated between each adjacent pair of connections, and depends on the relative quantities of the phases flowing in these particular sections of the wellbore. This calculation is more accurate than the other choice if different mixtures of fluids enter the well through each connection, but it is treated explicitly in the numerical scheme.
- AVG: Averaged density calculation. The flowing mixture density is treated as uniform throughout the wellbore at formation level, and depends on the total inflow rates of each phase and the well's bottom hole pressure. This calculation is performed implicitly in the numerical scheme
- Fluid in place region number
 - It supplies the reservoir conditions used in calculating the well's reservoir fluid volume rate. (The reservoir fluid volume rate is based on the volume that the produced or injected mixture would occupy at the average conditions hydrocarbon pressure, Rs, Rv within the specified fluids-in place region). If a zero value is entered, the average hydrocarbon conditions in the field are used. If a negative value is entered, the region number is set equal to the fluids-in place region number of the lowest grid block in which the well is completed. If a positive value is entered, it is interpreted as the required fluids-in-place region number.
- Friction
 - o Enabling Friction well option

Well Manager Well Recurrents: + Keyword Info: 1 Vell Name Value Unit Description 1 Vell Name Value Unit Description - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -	• ×								🂐 Well Manager
Weils Weil Recurrents Weil Name Defined Dates (2005/02/01) Name Value Unit Description 1 Vell 1 Keywords: I-Location of well head or heel 1 2 - 1 Vell 1 Keywords: I-Location of well head or heel 1 2 - 2 1 Vell 1 Keywords: I-Location of well head or heel 1 2 - 3 1 Vell 1 Keywords: I-Location of well head or heel 1 2 - 4 1 1 2 - - - - 1 Constaints I-Location of well head or heel 1 2 - - 1 Constaints I-Location of well head or heel 1 2 - - 1 Constaints I-Location of automatic stut-in SHU - - - 1 Defined Dates - Type of density calculation for automatic stut-in SHU - - 2 Others - - Type of density calculation for the well - - Fluids-in-place region number stut-in 2 - - - - - - - <									Well Manager
Well Recurrents Keyword Info: Well Name Defined Dates (2005/02/01) Name Value Unit Description 1 Well Name a Definitions Name Value Unit Description 1 Well Name a Definitions Performations Reference depth for bottom hole pressure m m 1 Defined Dates (2005/02/01) Prefored phase for the well 1 - - 2 Ocnstraints Instructions for automatic shui-in SHUT - - 2 Others Others Type of density calculation for the well - - 2 Others Type of density calculation SEG - Type of density calculation for the well 2 Others Friction - - Fuids-in-place region number supply 5 Friction - - - - - 4 - - - - - - - 1 - - - - - - - - 1 -	A .								
Weil Name Defined Dates (2005/02/01) Name Value Unit Description 4 Vell Keywords: I-location of well head or heal 1 - - 4 Definitions Meterance depth for bottom hole pressue m m - 1 Constraints Prefered phase for the well 1 - - 2 Others Prefered phase for the well 1 - - 3 Definitions Prefered phase for the well 1 - - 4 Definitions Prefered phase for the well 1 - - 1 Definitions Prefered phase for the well 1 - - 1 Definitions Prefered phase for the well 1 - - 1 Definitions Prefered phase for the well 1 - - 1 Definitions Prefered phase for the well YES - - 1 Definitions Prefered phase for the well YES - - 1 Definitions Prefered phase for the well - - Fluids-in-place region number supply 1 Price - - - - - - <th></th> <th></th> <th></th> <th></th> <th></th> <th>Keyword Info:</th> <th></th> <th>Well Recurrents</th> <th>Wells</th>						Keyword Info:		Well Recurrents	Wells
Weinzeite Derine Derine Derine (200/02/01 Image: Constraints 1 Weinzeite Definitions - - - - Definitions - - - - -		Description	Unit		Value	Name		T * -	T · -
1 Volume Keywords: I - Location of well head or head 1 I I I A Definitions Reference depth for both hole pressue m m Perforations Reference depth for both hole pressue m m Perforations Instructions for automake shuk-ins SHUT v Perforations Instructions for automake shuk-ins SHUT v Others Others Type of density calculation SEG v Type of density calculation SEG v Type of density calculation for automaker Friction Image: State in the set in the			-	-	1	I-Location of well head or heel	• • • • • • • • • • • • • • • • • • • •	Defined Dates: 2005/02/01	Well Name
WELSPECS 2005/02/01) Prefered dphase for the well • Prefered phase for the well • Constraints Instructions for automatic shuti-in Perforations Crossflow ability flag Others Type of density calculation SEG • Prefered phase for the well • Perforations Crossflow ability flag YES Others Type of density calculation SEG • Prefered phase for the well • • • Perforations Crossflow ability flag YES • Others Type of density calculation for the well • • Friction • • • • Perforations • • • • Others • • • • Friction • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •			-	-	1	J-Location of well head or heel		Keywords:	1 Wen 1
WitSecs (2005/02/01) Preferred phase for twe will • Perforations Instructions for automatic shut-in SHUT • Others Type of density calculation SEG • Type of density calculation SEG • • Perforations Fildid-in-place region number • • Others Fildid-in-place region number • • Perforations • • • Others Fildid-in-place region number • • Perforations • • • Others • • • • Perforations • • • <t< th=""><th></th><th></th><th>m</th><th></th><th>*</th><th>Reference depth for bottom hole pressure</th><th></th><th>▲ Definitions</th><th></th></t<>			m		*	Reference depth for bottom hole pressure		▲ Definitions	
Constaints Instructions for automatic shut-in SHUT • Perforations Crossflow ability flag YES • Others Type of density calculation for the we Fluids-in-place region number • Fluids-in-place region number • • Fluids-in-place region number Fluids-in-place region number • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • <td< th=""><th></th><th></th><th>•</th><th>+</th><th></th><th>Preferred phase for the well</th><th>(2005/02/01)</th><th>WELSPECS (2005/02/01)</th><th></th></td<>			•	+		Preferred phase for the well	(2005/02/01)	WELSPECS (2005/02/01)	
Performance Crossford valify flag VES • Others Type of density caluation SEG • Type of density calculation for the we Type of density calculation Fidds-in-place region number • • • Fidds-in-place region number • • • • Fidds-in-place region number • • • • Wildcard • • • • Wildcard • • • •			-	-	SHUT	Instructions for automatic shut-in		Constraints	
Unless Type of density calculation SEG • Type of density calculation for the we Fluids-in-place region number • • Fluids-in-place region number supply Friction • • Fluids-in-place region number supply Friction • • • Wildcard • • •			-	*	YES	Crossflow ability flag		Perforations	
Widdard Middard	Ilbore hydrost	Type of density calculation for the wellbor	-	-	SEG	Type of density calculation		Others	
Wildcard	ing the reserv	Fluids-in-place region number supplying t	-		*	Fluids-in-place region number			
			•			Friction			
Wildcard						-			
Wildcard									
Wildcard									
Wildcard						_			
Wildcard						-			
Wildcard						_			+ -
									Wildcard
						-			Whiteard
						-			
						-			
* These well recurrents are set from a wildcards. To change	,						ents are set from a wildcards. To change	* These well recurrents are set from	
parameters choose are conceptulating windcast.							the corresponding wildcard.	parameters choose the correspond	
Metric (ECLIPSE ^M) 🔹 0.00 Import Eclipse Well and Group Data Import Eclipse Well Data Cancel Validate First Step 🔹 OK		Step 🔹 OK	late First	Valida		ell Data Cancel	ell and Group Data Import Eclipse W	Import Eclipse Well and Group D	Metric (ECLIPSE™) ▼ 0.00

Figure 134 WELSPECS Data

2- Constraints:

2-1- WGRUPCON (Sets well guide rates for group control):

The WGRUPCON data has been displayed in Figure 135. It contains the following data:

- Available for group control
 - Check: The well is automatically placed under group control if a rate target is imposed on its group, or on a higher level group to which it connects, or on the field.
 - Uncheck: The well is prevented from coming under group control it flows according to its own target or limits.
- Guide Rate
 - It is a dimensionless number governing the well's share of the group's target rate. The target rates of the wells under group control are set in proportion to their guide rates, to meet the group or field production target. If the guide rate phase differs from the phase under control, the guide rate is translated into a guide rate for the controlled phase using the well's flow rates at the beginning of each time step. If a zero or negative guide rate is specified, the well's guide rate is set at the beginning of each time step from the general formula

specified with keyword GUIDERAT. If a general formula has not been specified, or for injection wells (for which there is no general formula), the well's guide rate is set equal to its production or injection potential (that is the flow rate the well would instantaneously achieve in the absence of any rate constraints.

- Scaling Factor
 - The well's guide rate is multiplied by the number specified here.
- Target Phase
 - OIL: Guide rate applies to water phase
 - o WAT: Guide rate applies to oil phase
 - o GAS: Guide rate applies to gas phase
 - LIQ: Guide rate applies to liquid phase (for production wells only)
 - RAT: Guide rate applies to the surface flow rate of the phase that the well is injecting (for injectors only)
 - o RES: Guide rate applies to the reservoir fluid volume rate

🂐 Well Manager							
Well Manager							
Wells	Well Recurrents						
+	+	Keyword Info:					
Well Name	Defined Dates: 2005/02/01	 Name 	Value	Unit	Description		
1 Well1	Keywords:	Available for Group Control		÷			
	. Definitions	Guide Rate					
	WEISPECS (2005/02/01)	Scaling Factor	•	-			
	A Constraints	Target Phase		· ·			
	WGRUPCON (2005/02/01)						
	Perforations						
	Others						
+ -							
Wildcord							
Wildcard							
	* These well recurrents are set from a wildcards. To char parameters choose the corresponding wildcard.	ige					
Metric (ECLIPSE TM) -	Import Eclipse Well and Group Data	clipse Well Data	ancel		Validate First St	tep 🔻	Ж

Figure 135 WGRUPCON Data

2-2- WCONHIST (Observed rates for history matching production wells):

WCONHIST is used in place of WCONPROD to declare production wells as special history matching wells, and to enter their observed flow rates (and

optionally their measured BHP and THP values). The equivalent constraint for defining history matching injection wells is WCONINJH. Wells can be declared as history matching wells during the history matching process, when their oil, water and gas production rates are known. Figure 136 displays the WCONHIST data. It contains the following data:

- Open/Shut Flag
 - OPEN: Well open for production
 - o STOP: Well stopped off above the formation
 - o SHUT: Well completely isolated from the formation
- Control Mode
 - o ORAT: Controlled by the observed oil rate
 - o WRAT: Controlled by the observed water rate
 - GRAT: Controlled by the observed gas rate LRAT: Controlled by the observed liquid rate (oil + water)
 - RESV: Controlled by the reservoir fluid volume rate calculated from the observed phase flow rates
- Observed Oil Production
- Observed Gas Production
- Production Well VFP Table
 - Reset: The well's THP is calculated, but the lower limit check is disabled so that the well does not go on to THP control.
 - Unchanged: does not require the THP to be calculated.
- Artificial Lift Quantity
 - This should be defaulted to 0, if you do not require the THP to be calculated.
- Observed Tubing Head Pressure
- Observed Bottom Hole Pressure

Manager									
lls ⊢ ▼ —	Well Recurrents								
Well Name	Defined Dates: 2005/02/01		Name	Value	Unit	Description			
Well 1	Kannada		Open/shut flag	OPEN	* -				
	Keywords:		Contorl mode	ORAT	* -				
	⊿ Definitions		Observed oil production	*	m³/day				
-	WELSPECS (2005/02/01)		Observed water production	*	m²/day				
	Constraints WCRUDCON (2005 (02 (01))		Observed gas production	*	m³/day				
	WCONHIST (2005/02/01)		Production Well VFP Table	Reset	* -				
	Perforations		Artificial lift quantity	*	-				
	Others		Observed tubing head pressure	*	Bar				
	ouncip		Observed bottom hole pressure	•	Bar				
-			-						
-			-						
_									
+ -									
/ildcard									
			-						
			-						
	* These well recurrents are set from a wildca	rds. To change ard.							

Figure 136 WCONHIST Data

2-3- WHISTCTL (Control mode instructions for history matching wells):

This constraint contains instructions that influence the control of all history matching wells. Figure 137 displays the WHISTCTL data. It contains the following data:

- Control Mode Override
 - o ORAT: Wells are controlled by the observed oil rate
 - WRAT: Wells are controlled by the observed water rate
 - GRAT: Wells are controlled by the observed gas rate
 - LRAT: Wells are controlled by the observed liquid rate (oil +
 - RESV: Wells are controlled by the reservoir fluid volume rate calculated from the observed phase flow rates
 - NONE No control mode override is applied; the control modes specified in subsequent WCONHIST constraint will be honored
- Terminate Simulation
 - Check: Terminate the run
 - Uncheck: Continue the simulation with the well on BHP control

Note: This constraint will only change the control mode of a well when the well is in a subsequent WCONHIST constraint. It has no effect on previous WCONHIST constraints.

Figure 137 WHISTCTL Data

2-4- WCONINJH (Observed rates for history matching injection wells):

This constraint is used in place of WCONINJE to declare injection wells as special history matching wells, and to enter their observed flow rates (and optionally their measured BHP and THP values). The equivalent constraint for defining history matching production wells is WCONHIST. Wells can be declared as history matching wells during the history matching process, when their injection rates are known. During the simulation these wells are normally be constrained to operate at their observed injection rates, and their calculated BHP and/or THP values are compared against the measured values. Figure 138 displays the WCONINJH data. It contains the following data:

- Open/Shut Flag
 - OPEN: Well open for injection
 - o STOP: Well stopped off above the formation
 - o SHUT: Well completely isolated from the formation

When the well is shut or stopped, set the observed flow rate to zero. If the flow rates are set to zero while the well is open the behavior depends on whether cross flow is permitted in WELSPECS constraint. If cross flow is allowed the well behaves as if stopped. If cross flow is banned the well will be automatically shut.

- Injector Type
 - o WATER: Water injector
 - o GAS: Gas injector
 - o OIL: Oil injector
- Observed Injection Rate
 - For a multiphase injector, this is the surface flow rate of the preferred phase of the well.
- Observed Bottom Hole Pressure
- Observed Well Head Pressure
- Injection Well VFP Table
 - Reset: The well's THP is calculated, but the upper limit check is disabled so that the well does not go on to THP control.
 - Unchanged: does not require the THP to be calculated.

💐 Well Manager							x
Well Manager						ſ.	
Wells + -	Well Recurrents	Keyword Info:					
Well Name	Defined Dates: 2005/02/01	Name	Value	Unit	Description		
1 Well 1	Kenwords	Open/shut flag	OPEN •	-			
	NC)WORD.	Injector Type	WATER	-			
	Definitions	Observed injection rate	*	m³/day			
	WELSPECS (2005/02/01)	Observed bottom hole pressure	*	Bar			
	WGRUPCON (2005/02/01)	Observed tubing head pressure	•	Bar			
	WORDFC014 (2005/02/01) WCONHIST (2005/02/01)	Injection Well VFP Table	Reset	-			
	WHISTCTL (2005/02/01)	·					
	WCONINJH (2005/02/01)	-					
	Perforations						
	Others						
		-					
+		-					
· · · · · · · · · · · · · · · · · · ·							
Wildcard							
		_					
	* These well recurrents are set from a wildcards. To change parameters choose the corresponding wildcard.						
Metric (ECLIPSE™) ▼ 0.00	Import Eclipse Well and Group Data Import Eclipse We	ell Data Canc	el	Valio	date First Step	• ОК	

Figure 138 WCONINJH Data

2-5- WELOPEN (Shuts or reopens wells or well connections):

This constraint can be used to shut or reopen wells or well connections, without having to specify the rest of the well control data or connection data. Figure 139 displays the WELOPEN data. It contains the following data:

- Open/Shut Flag
 - OPEN: Well or connections open to flow
 - o SHUT: Well or connections completely isolated from formation

- STOP: Well stopped off above formation. (If the record applies to a connection, it has the same effect as SHUT.)
- AUTO: Well or connections initially SHUT but open automatically.
- I-Location of Connecting Grid Block(s)
- J-Location of Connecting Grid Block(s)
- K-Location of Connecting Grid Block(s)
- Number of First Completion in Range
- Number of First Completion in Range

Note: If this constraint is used to shut a well during a history matching simulation, the actual production or injection rates are set to zero from this point in time, but all historical well rates remain unaltered. If the well was actually shut at this point in time, then the WCONHIST or WCONINJH constraints should be used to shut the well and thus zero the historical well rates.

🂐 Well Manager						
Well Manager						
Wells	Well Recurrents					
+	+	Keyword Info:				
Well Name	Defined Dates: 2005/02/01	 Name 	Value	Unit	Description	
1 Well 1	Kenworde	Open/shut flag	OPEN	÷ -		
-	Reywords.	I Location of connecting grid block(s)	*	÷		
	Definitions	J Location of connecting grid block(s)	*	-		
	WELSPECS (2005/02/01)	K Location of connecting grid block(s)	*	1.0		
	Constraints	Number of first completion in range	*			
	WGRUPCON (2005/02/01)	Number of last completion in range	*	-		
	WCONHIST (2005/02/01)					
	WHISTCTL (2005/02/01)					
	WCONINJH (2005/02/01)					
	WELOPEN (2003/02/01)					
	Others					
	oules					
± _						
- T -						
Wildcard						
	* These well recurrents are set from a wildcards. To change parameters choose the corresponding wildcard.					
Metric (ECLIPSE™) ▼	0.00 Import Eclipse Well and Group Data Import Eclipse	Well Data Cancel		Validate f	First Step 🔹	ОК
Metric (ECLIPSE™) ▼	0.00 Import Eclipse Well and Group Data Import Eclipse	Well Data Cancel		Validate f	First Step 🔹	ОК

Figure 139 WELOPEN DATA

2-6- <u>WECON (Economic limit data for production wells):</u>

This constraint can be used to put an economic limit data only for the production wells. Figure 140 displays the WECON data. It contains the following data:

• Minimum Oil Production rate

- If the oil production rate falls below the specified minimum, the well is shut or stopped
- Minimum Gas Production Rate
 - If the gas production rate falls below the specified minimum, the well is shut or stopped
- Maximum Water Cut
 - The water cut is the ratio of water to total liquid (oil + water) surface volume production rates
- Maximum Gas Oil Ratio
- Maximum Water Gas Ratio
- Work-Over Procedure
 - NONE: No action to be taken
 - o CON: Shut worst-offending connection
 - PLUS_CON: Shut worst-offending connection and all those below it.
 - WELL: Shut or stop the well (refer to WELSPECS)
- Other Well
 - Name of well to be opened when this well is shut. If a well name is entered here, the named well is opened when the current well is closed automatically for any reason (for example on violating an economic limit). The named well must be fully specified as a SHUT producer or injector. Manual closure of the current well (for example using WCONPROD or WELOPEN) does not cause the named well to be opened.
- Target Quantity
 - RATE: The limits are applied to the well's actual flow rate. The minimum rate checks are bypassed for wells whose rate target is currently cut back under prioritization, to prevent them being closed while temporarily flowing with a small target rate. For wells subordinate to groups under guide rate control (GCONPROD), the minimum rate limits will be applied unless the group has a zero production rate target.
- Secondary Maximum Water Cut Limit

- If this value is set > 0.0 (and < 1.0), a secondary water cut limit is applied to the well.
- Secondary Work-Over Procedure
 - o NONE: Do nothing
 - CON: Shut worst-offending connection
 - PLUS_CON: Shut worst-offending connection and all those below it (see COMPORD)
 - WELL: Shut or stop the well (see WELSPECS)
 - LAST: The secondary water-cut is applied only to the last open connection in the well. (Connections on automatic opening class as open in this context.) This action differs from the ones above in that, when the well has only one connection left open and it begins to exceed its primary water-cut limit again, the well remains open until it exceeds its secondary water-cut limit but the other connections closed in previous work overs will not be reopened.
 - RED: The well is worked over each time it violates its primary water-cut limit, as normal. But each work over attempts to close sufficient connections to reduce the well's water-cut to below the specified secondary limit. Clearly, in this case, the secondary value should be less than the primary value. Assuming the well can be worked over to achieve this secondary value, it is not worked over again until the primary value is again violated. This option has the effect of requiring fewer work overs but closing more connections per work over.
- Maximum Gas Liquid Ratio
- Minimum Liquid Production Rate
 - If the liquid production rate falls below the specified minimum, the well is shut or stopped

Vell Manager						
Wells + - −	Well Recurrents		Keyword Info:			
Well Name	Defined Dates: 2005/02/01	•	Name	Value	Unit	Description
Well 1	Kannada		Minimum oil production rate	*	m³/day	
	Keywords:		Minimum gas production rate	*	m³/day	
	⊿ Definitions		Maximum water cut	•	-	
	WELSPECS (2005/02/01)		Maximum gas-oil ratio	*	-	
	▲ Constraints		Maximum water-gas ratio	*	-	
	WGRUPCON (2005/02/01)		Workover procedure	NONE	· -	Workover procedure on exceeding water cut, GOR,
_	WCONHIST (2005/02/01)		Other Well			
_	WHISTCTL (2005/02/01)		Target Quantity	RATE	· .	Quantity to which the minimum economic limits w
_	WELOPEN (2005/02/01)		Secondary maximum water cut limit	*		
	WECON (2005/02/01)		Secondary workover procedure	NONE	· .	Workover action on exceeding the secondary water
	Perforations		Maximum gas-liquid ratio	*		,
	Others		Minimum liquid production rate	*	m³/day	
+-						
Wildcard						
	* These well recurrents are set from a wildcards. T	o change				
	parameters choose the corresponding wildcard.	o change	•		m	
Metric (ECLIPSE™) ▼	0.00 Import Eclipse Well and Group Data Im	port Eclipse W	ell Data Cancel		Validate	First Step 🔹 OK

Figure 140 WECON Data

2-7- <u>WTEST (Instructions for periodic testing of closed wells):</u>

This constraint can be used for periodic testing of closed wells. Figure 141 displays the WTEST data. It contains the following data:

- Time Interval
 - The well is tested at the beginning of the first time step that starts after the specified interval has elapsed since it was closed. Subsequent tests are performed at each time step that starts after the specified interval has elapsed since the previous test. If the testing interval is very small (for example, 1 day), the well is tested at the beginning of each time step, unless of course the time steps are smaller than this.
- Test Number
 - After the well has been tested this number of times (regardless of whether any tests are successful), it is not tested any more unless this item is reset in a subsequent use of the WTEST constraint.
- Start-up Time
 - The well's efficiency factor is steadily ramped up over the specified start-up time when it is reopened after a successful test. Thus if the start-up time is large compared to the time step size, the well is brought on gradually, avoiding the time

step convergence difficulties sometimes observed when a high-rate well is suddenly opened.

- P
- The well is tested if it has been closed for any physical reason (for example failure to operate at its BHP or THP limit). It is opened if the test shows that it can operate again.
- E
- The well is tested if it has been closed due to an economic limit. If it has at least one open connection, the well is opened if it obeys all the limits set in WECON. Any closed connections will not be reopened. However, if the well has no open connections, it must have been closed after a workover resulting from a water cut, GOR or WGR limit violation. In this case, all connections that were closed by automatic workovers are tested individually. A connection is reopened if its water cut, GOR and WGR do not exceed the economic limits. Connections that were closed manually are not tested. The well is opened if at least one connection is reopened.
- G
- The well is opened if it has been closed due to a GROUP or FIELD limit. The well is opened unconditionally, since it cannot be tested in isolation. If it causes a group or field limit to be broken, the remedial action is performed at the end of the time step in the usual manner. If the well has no open connections, all connections closed by automatic workovers are reopened.
- D
- The well is tested if it has been closed on exceeding its maximum THP design limit. It is reopened if its THP has fallen below a maximum limit for reopening, when flowing at a specified rate (subject to obeying its other rate and pressure limits).
- C
 - Connections closed in automatic workovers are tested individually for reopening while the well is still open. A

connection is reopened if it does not violate any of the limits set in WECON or CECON. Any connections that were closed manually are not reopened. The difference between this type of test and the test triggered by an E is that the E test is only performed after the whole well has been closed by an economic limit, while the C test is performed while one or more connections have been closed but the well is still producing through other connections. The testing interval prevents testing until the specified number of days has elapsed since the most recent automatic closure of any connection in that well. Since the well itself does not have to be reopened after a successful C test, the start-up time does not apply. Wells (and, with the C option, connections) that were closed manually are not tested.

🍭 Well Manager					
Well Manager					
Wells	Well Recurrents	Keyword Info:			
T · -		Name	Value	Unit	Description
Well Name	Defined Dates: 2005/02/01	Time Interval	10100	day	- Section
	Keywords:	Test Number	*	-	
	▲ Definitions	Start-up Time	*	day	
	WELSPECS (2005/02/01)	P			The well is tested if it has been closed for any physical reason
	Constraints	E			The well is tested if it has been closed due to an economic limit
	WGRUPCON (2005/02/01)	G			The well is opened if it has been closed due to a GROUP or FIELD limit
	WCUNHIST (2005/02/01)	D		÷	The well is tested if it has been closed on exceeding its maximum THP design lin
	WHISTCTL (2005/02/01) WELOPN (2005/02/01) WECON (2005/02/01)			-	Connections closed in automatic workovers are tested individually for reopening
	WTEST (2005/02/01)				
	Perforations				
	Others				
+ -					
Wildcard					
	* These well recurrents are set from a wildcards. To change parameters choose the corresponding wildcard.	•			117
Metric (ECLIPSE™) ▼ 0.00	Import Eclipse Well and Group Data Import Eclipse We	ell Data	Cancel		Validate First Step 🔹 OK

Figure 141 WTEST Data

2-8- <u>WVFPDP (Adjusts a well's BHP obtained from the VFP tables):</u>

This constraint specifies a pressure adjustment, which is added to the value of the well BHP obtained by interpolating the VFP tables. It can be used, for example, to help match a well's flow rate at a given THP, by adjusting the effective pressure loss between the bottom hole and the tubing head. A positive adjustment increases the BHP and makes a production well less

productive. Conversely, a negative adjustment improves the production. The reverse holds for injection wells. Figure 142 displays the WVFPDP data. It contains the following data:

- BHP Pressure Adjustment
- Tubing Pressure Loss Scaling Factor

🖞 Well Manager								
Well Manager								
Wells	Well Recurrents	Key	word Info:					
Well Name	Defined Dates: 2005/02/01		ame	Value	Unit	Description		
1 Well 1	Kenwords:	BH	IP Pressure Adjustment	0.0	Bar			
-	Keywords.	Tu	ibing Pressure Loss Scaling Factor	*	-			
_	▲ Definitions							
_	WELSPECS (2005/02/01)							
	Constraints							
	WGROPCON (2005/02/01)							
	WHISTCTI (2005/02/01)							
	WFLOPEN (2005/02/01)							
	WECON (2005/02/01)							
	WTEST (2005/02/01)							
	WVFPDP (2005/02/01)							
	Perforations							
	Others							
+ -								
Wildcard								
	* These well recurrents are set from a wildcards. To cl	hange						
Metric (ECLIPSE™) -	0.00 Import Eclipse Well and Group Data Impor	t Eclipse Well Da	ta Cancel		Validat	e First Step	+	ОК

Figure 142 WVFPDP Data

2-9- WCUTBACK (Well cutback limits):

WCUTBACK is used to define well cutback limits for both production and injection wells. Figure 143 displays the WCUTBACK data. It contains the following data:

- Water Cut Upper Limit
- Gas Oil Ratio Upper Limit
- Gas Liquid Ratio Upper Limit
- Water Gas Ratio Upper Limit
- Rate Cutback Factor (Fraction)
 - This is the ratio of the reduced flow rate to the current flow rate. It should be less than 1.0
- Control Phase
 - o OIL: Reduced oil rate
 - WAT: Reduced water rate
 - o GAS: Reduced gas rate

- LIQ: Reduced liquid rate
- o RESV: Reduced reservoir fluid volume rate
- Grid Block Pressure Limit
 - It is applied to any block containing an open connection to the well. This is treated as a lower limit for production wells, and an upper limit for injection wells.
- Grid Block Pressure Limit of Reversing
 - It is applied to any block containing an open connection to the well. This is treated as an upper limit for production wells, and a lower limit for injection wells.
- Water Cut Lower Limit for Reversing
- Gas Oil Ratio Lower Limit for Reversing
- Gas Liquid Ratio Lower Limit for Reversing
- Water Gas Ratio Upper Limit For Reversing
- Remove cutbacks when the well is worked over?
 - Checked: When the well is worked over after violating an economic limit, any cutbacks performed on the well are completely reversed by removing the rate limit on the control phase. Cutbacks are only reversed for workovers (that is connection alterations) and not if the well is shut or stopped.
 - Unchecked: Any cutbacks made to the well remain in force (unless reversed by the application of cutback reversal limits).

Figure 143 WCUTBACK Data

2-10- WCONPROD (Control data for production wells):

WCONPROD is used to put control data for production wells. Figure 144 displays the WCONPROD data. It contains the following data:

- Open/Shut Flag
 - OPEN: Well open for production
 - o STOP: Well stopped off above the formation
 - o SHUT: Well completely isolated from the formation
 - AUTO: Well initially SHUT, but is opened automatically as soon as constraints on drilling rate (WDRILTIM), drilling rig availability, and the maximum number of open wells per group allow. If no such constraints are specified, the well will open immediately. Wells on AUTO are opened in the order in which they are first specified in WELSPECS, unless any belong to a group that already has its maximum number of open wells or has all its available drilling rigs already occupied. It is preferable to shut or stop the well rather than give it a zero flow rate target. In particular, a zero flow rate target applied to a well with a THP limit may cause hunting between control modes.
- Control Mode

- ORAT: Controlled by oil rate target
- o WRAT: Controlled by water rate target
- o GRAT: Controlled by gas rate target
- o LRAT: Controlled by liquid rate target
- o RESV: Controlled by reservoir fluid volume rate target
- BHP: Controlled by BHP target
- THP: Controlled by THP target
- GRUP: The well is immediately under group control, to produce its share of a group or field target rate set with constraint GCONPROD.
- Oil Rate Target or Upper Limit
- Water Rate Target or Upper Limit
- Gas Rate Target or Upper Limit
- Liquid Rate Target or Upper Limit
- Reservoir Fluid Volume Rate Target or Upper Limit
- BHP Target or Lower Limit
- THP Target or Lower Limit
- Production Well VFP Table
 - Reset: The well's THP is calculated, but the upper limit check is disabled so that the well does not go on to THP control.
 - Unchanged: does not require the THP to be calculated
- Artificial Lift Quantity

Figure 144 WCONPROD Data

2-11- WCONINJE (Control data for injection wells):

WCONINJE is used to put control data for production wells. Figure 145 displays the WCONINJE data. It contains the following data:

- Injector Type
 - WATER: Water injector
 - o GAS: Gas injector
 - o OIL: Oil injector
- Open/Shut Flag
 - OPEN: Well open for injection.
 - STOP: Well stopped off above the formation.
 - o SHUT: Well completely isolated from the formation
 - AUTO: Well initially SHUT, but is opened automatically as soon as constraints on drilling rate (WDRILTIM), drilling rig availability (GRUPRIG), and the maximum number of open wells per group allow. If no such constraints are specified, the well opens immediately. Wells on AUTO are opened in the order in which they are first specified in WELSPECS, unless any belong to a group that already has its maximum number of open wells or has all its available drilling rigs already occupied.

- Control Mode
 - RATE: Controlled by surface flow rate target
 - o RESV: Controlled by reservoir volume rate target
 - BHP: Controlled by BHP target
 - THP: Controlled by THP target. The control mode is not available with multiphase injectors.
 - GRUP: The well is immediately under group control, to inject its share of a group or field target set with the GCONINJE constraint.
- Surface Flow Rate Target or Upper Limit
 - For a multiphase injector, this is the surface flow rate of the preferred phase of the well.
- Surface Fluid Volume Rate Target or Upper Limit
- BHP Target or Upper Limit
 - It is recommended that this quantity should be set to a value not exceeding the highest pressure in the PVT tables, to ensure the tables are not extrapolated in the well. It is best not to default this quantity, as its value is used in calculating the well potential.
- THP Target or Upper Limit
- Injection Well VFP Table
 - Reset: The well's THP is calculated, but the upper limit check is disabled so that the well does not go on to THP control.
 - Unchanged: does not require the THP to be calculated

Figure 145 WCONINJE Data

2-12- WELTARG (Resets a well operating target or limit):

This constraint can be used to reset a target or limit value for a well, without having to re-specify all the other quantities required by the control constraints WCONPROD or WCONINJE. These other quantities are left unchanged, including the open/shut status of the well. The well control data must initially have been fully specified using WCONPROD or WCONINJE.

If the well has been declared a history matching well (see WCONHIST and WCONINJH) the WELTARG constraint may be used to modify its BHP limit, VFP table number, and artificial lift quantity. The other quantities should not be modified with this keyword. Figure 146 displays the WELTARG data. It contains the following data:

- Control to be Changed
 - o ORAT: Oil rate
 - o WRAT: Water rate
 - o GRAT: Gas rate
 - o LRAT: Liquid rate
 - o RESV: Reservoir fluid volume rate
 - o BHP: Bottom hole pressure

- THP: Tubing head pressure (A non-zero VFP table number must first have been set)
- o VFP: VFP table number
- LIFT: Artificial lift quantity (A non-zero VFP table number must first have been set)
- Value
 - If the quantity is VFP or LIFT, then the value here may not be defaulted. For all other quantities, a defaulted value here will result in RETINA using the corresponding flowing value for the well at the end of the previous time step as the target or limit for the control or constraint in the first item.

ll Manager							1
ells +	Well Recurrents		Keyword Info:				
Well Name	Defined Dates: 2005/02/01	•	Name	Value	1	Unit	Description
Well 1			Control to be changed	BHP	τ.	-	Definition of control or constraint quantity to be changed
	Keywords:		Value	*	E	Bar	
	▲ Definitions						
	WELSPECS (2005/02/01)						
	▲ Constraints						
	WGRUPCON (2005/02/01)						
	WCONHIST (2005/02/01)						
	WHISTCTL (2005/02/01)						
	WELOPEN (2005/02/01)						
	WECON (2005/02/01)						
	WTEST (2005/02/01)						
	WVFPDP (2005/02/01)						
	WCUTBACK (2005/02/01)						
	WCONPROD (2005/02/01)						
	WCONINJE (2005/02/01)						
	WELTARG (2005/02/01)						
· _	Perforations						
ldcard	Others						
	* These well recurrents are set from a wildcards. To	change					

Figure 146 WELTARG Data

2-13- WELPI (Sets well productivity/injectivity index values):

This constraint can be used to set the productivity/injectivity index (PI) value of one or more wells to a specified value. The well connection properties must be defined in the usual manner, with COMPDAT, but the connection transmissibility factors are adjusted proportionately so that the calculated PI of the well equals the specified value. The PI is calculated using the phase and drainage radius defined in WELSPECS. Note that the calculation is not suitable for application to horizontal wells. The adjustment of the connection factors is performed at the time the WELPI constraint is entered, using the current grid block solution. If the fluid

mobility values in the grid blocks subsequently change, the well's actual PI also changes. Figure 147 displays the WELPI data. It contains the following data:

- Well Productivity Index for Liquid Phase
- Well Productivity Index for Gas

(wen Manager						
/ell Manager						
Wells	Well Recurrents	Versional Teles				- 1
+	+ • -		1	f.e.s	I	
Well Name	Defined Dates: 2005/02/01	 Name 	Value	Unit	Description	
Well 1	Keywords:	Well Productivity Index for Liquid Phase		m²/day.Bar		
	4 Definitions	weil Productivity Index for Gas		m /uay.bar		
	WELSPECS (2005/02/01)					
	▲ Constraints					
-	WGRUPCON (2005/02/01)					
_	WCONHIST (2005/02/01)					
	WHISTCTL (2005/02/01)					
	WELOPEN (2005/02/01)					
	WECON (2005/02/01)					
	WTEST (2005/02/01)					
_	WVFPDP (2005/02/01)					
_	WCUTBACK (2005/02/01)					
_	WCONPROD (2005/02/01)					
	WCONINJE (2005/02/01)					
	WELTARG (2005/02/01)					
+ -	WELPI (2005/02/01)					
Vildcard	Perforations					
	Others					
	* These well recurrents are set from a wildcards. To change parameters choose the corresponding wildcard.	2 2				
		www.ell.Detr		Validate Circl Cto		OK

Figure 147 WELPI Data

2-14- WEFAC (Sets well efficiency factors):

This constraint is used to set well efficiency factors for down time of the wells. Figure 148 displays the WEFAC data. It contains the following data:

- Well Efficiency Factor
 - This is the fractional time for which the well is operational.
 For example, if the well is 'down' for 20 percent of the time, its efficiency factor will be 0.8. The efficiency factor must be greater than zero.

Manager							ſ
lls ⊢ ▼ —	Well Recurrents		Keyword Info:				
Well Name	Defined Dates: 2005/02/01	-	Name	Value	Unit	Description	
Well 1	Kaunada		Well Efficiency Factor	*	-		
	Keywords:						
	Definitions		_				
	WELSPECS (2005/02/01)						
	▲ Constraints		_				
	WGRUPCON (2005/02/01)						
	WCONHIST (2005/02/01)		_				
	WHISTCTL (2005/02/01)						
	WELOPEN (2005/02/01)		_				
	WECON (2005/02/01)		-				
	WTEST (2005/02/01)		_				
	WVFPDP (2005/02/01)		-				
	WCUTBACK (2005/02/01)		_				
	WCONPROD (2005/02/01)						
	WCONINJE (2005/02/01)		_				
	WELTARG (2005/02/01)		-				
	WELPI (2005/02/01)						
dcard	WEFAC (2005/02/01)						
	Perforations		-				
	ourers						
	* These well recurrents are set from a wildcards. To ch parameters choose the corresponding wildcard.	ange					

Figure 148 WEFAC Data

2-15- <u>WWPAVE (Individual well block average pressure controls):</u>

This constraint controls the calculation of well block average pressures for individual wells. They represent the average pressure of the grid blocks containing connections to a given well, and optionally their adjacent and diagonal neighbors. Neighbor contributions can be weighted according to either the connection transmissibility factors or the grid block pore volumes. The averages relate only to a Cartesian grid. Figure 149 displays the WWPAVE data. It contains the following data:

- F1
- The weighting factor between the inner block and the outer ring of neighboring blocks, in the connection factor weighted average.

Note: For one-block averages, F1 is effectively 1.0, whatever the value entered here.

- F2
- The weighting factor between the connection factor weighted average and the pore volume weighted average.
- Average Density Calculation Method

- WELL: The hydrostatic head is calculated using the density of the fluid in the wellbore at the well connections.
- RES: The hydrostatic head is calculated using a representative density for the fluid in the reservoir. This density is calculated by averaging over fluid density for all the grid blocks associated with the well's connections. The average over phases is weighted by the phase saturation, and the average over grid blocks is weighted by pore volume. Whether the averaging is performed over all grid blocks with declared connections to the well or only those with currently open connections is determined by this item.
- NONE: Grid block pressures are not depth corrected.

Note: The wellbore fluid density is set to 0 whenever the well is shut. If WELL is selected there is a discontinuity in the reported pressure average when the well's status changes between shut and open/stopped.

• Well Connection Recognition Method

These flag controls whether the grid blocks associated with all the well's declared connections contribute to the average pressure, or just those associated with the currently open connections.

- OPEN: Only grid blocks associated with currently open connections are included in the averaging calculation.
- ALL: Grid blocks associated with all currently defined connections (whether open or closed) are included in the averaging calculation.

lell Manager						
Wells + ▼ —	Well Recurrents		Keyword Info:			
Well Name	Defined Dates: 2005/02/01	•	Name	Value	Unit	Description
1 Well 1	Karamada		F1	0.5		Weighting factor between the inner block and the o
	Reywords:		F2	1.0		Weighting factor between the connection factor w
	▲ Definitions		Average Density Calculation Method	WELL	* -	
	WELSPECS (2005/02/01)		Well Connection Recognition Method	OPEN	* -	
	▲ Constraints		-			
	WGRUPCON (2005/02/01)					
_	WCONHIST (2005/02/01)		-			
_	WHISTCTL (2005/02/01)					
_	WELOPEN (2005/02/01)					
	WECON (2005/02/01)		-			
	WTEST (2005/02/01)		-			
	WVFPDP (2005/02/01)					
	WCUTBACK (2005/02/01)		_			
_	WCONPROD (2005/02/01)					
_	WCONINJE (2005/02/01)		_			
1	WELTAKG (2005/02/01)		-			
T –	WELPI (2005/02/01)		_			
Wildcard	WEFAC (2005/02/01)					
	WWPAVE (2005/02/01)		-			
	Perforations		-			
	* These well recurrents are set from a wildcards. T parameters choose the corresponding wildcard.	o change	•	III		

Figure 149 WWPAVE Data

2-16- <u>WPAVEDEP (Reference depth for well block average pressure calculation):</u>

This constraint may be used to modify the reference depth for the calculation of well block average pressures. By default, the grid block pressures are corrected to the well's bottom hole reference depth (see WELSPECS) by applying a hydrostatic head. The WPAVEDEP constraint enables the use of an alternative reference depth, which is used solely for this calculation. Figure 150 displays the WPAVE data. It contains the following data:

🍭 Well Manager							
Well Manager							
Wells + -	Well Recurrents + -	Keyword Info:					
Well Name	Defined Dates: 2005/02/01	Name	Value	Unit	Description		
1 Well 1	Kananada	Reference Depth		m			
1	Keywords:						
	⊿ Definitions						
	WELSPECS (2005/02/01)						
	▲ Constraints						
	WGRUPCON (2005/02/01)						
	WCONHIST (2005/02/01)						
	WHISTCTL (2005/02/01)						
	WELOPEN (2005/02/01)						
	WECON (2005/02/01)						
	WTEST (2005/02/01)						
	W(LITRACK (2005/02/01)						
	WC0NBROD (2005/02/01)						
	WCONINIE (2005/02/01)						
	WEI TARG (2005/02/01)						
+ -	WELPT (2005/02/01)						
	WEFAC (2005/02/01)						
Wildcard	WWPAVE (2005/02/01)	-					
	WPAVEDEP (2005/02/01)	-					
	Perforations						
	Others						
	* These well recurrents are set from a wildcards. To change parameters choose the corresponding wildcard.						
Metric (ECLIPSE™) ▼ 0.00	Import Eclipse Well and Group Data Import Eclipse We	ell Data	Cancel		Vali	date First Step 🔹	ОК

Figure 150 WPAVEDEP Data

3- Perforations:

<u>3-1- Completion (Well completion specification data)</u>

This specifies the position and properties of one or more well completions. Figure 151 displays the Completion data. It contains the following data:

- I-Location of the Completion
 - If set to 0 or defaulted, the I-location of the well head (entered in WELSPECS) will be used
- J-Location of the Completion
 - If set to 0 or defaulted, the J-location of the well head (entered in WELSPECS) will be used
- K-Location of the Completion
 - If set to 0 or defaulted, the K-location of the well head (entered in WELSPECS) will be used
- Open/Shut Flag
 - OPEN: Connection open to flow
 - o SHUT: Connection closed off
 - AUTO: Connection initially closed, but will be opened automatically when another connection in the well is closed during an automatic workover. A connection on AUTO is opened each time the well is worked over, in the order in which the connections are first defined in Completion.
- Transmissibility Factor
- Wellbore Diameter
- Effective Kh
 - If a default, zero or negative value is entered, the Kh value is calculated from the grid block data. If a positive value for the connection transmissibility factor is entered in item 5, the calculation of the denominator term depends on whether the Kh value is set or defaulted. This quantity is required for calculating the connection transmissibility factor (if a default or zero value was supplied for item 5). It is ignored if not required.
- Skin Factor

- Large negative skin factors can cause problems if they increase the effective wellbore radius to approach the pressure equivalent radius of the grid block. Very high values of the connection transmissibility factor may result, which could cause convergence problems. In these circumstances, it may be preferable to change the grid block data near the well to model the physical cause of the negative skin (for example enhance the permeability out to a certain distance from the well). If the effective wellbore radius is increased beyond the pressure equivalent radius, the connection factor becomes negative and an error message is issued.
- Penetration Direction
 - o X: the well penetrates the grid block in the X direction
 - Y: the well penetrates the grid block in the Y direction
 - o Z: the well penetrates the grid block in the Z direction
- Pressure Equivalent Radius
- P Length
- Geo Fac
- W Frac
- Tubing Diameter
- Tubing Absolute Roughness

l Manager								
/ells + ▼ —	Well Recurrents		Keyword Info:					
Well Name	Defined Dates: 2005/02/01	•	Name	Value		Unit	Description	
Well 1			I Location	*	-			
	Keywords:		J Location	*				
_	⊿ Definitions		K Location	*	-			
	WELSPECS (2005/02/01)		Open Shut Flag	OPEN				
	▲ Constraints		Transmissibility Factor	•		P-m³/day-bars		
	WGRUPCON (2005/02/01)		Well bore Diameter	*		n		
	WCONHIST (2005/02/01)		Effective Kh	*		m².m		
-	WHISTCTL (2005/02/01)		Skin Factor	*	-			
_	WELOPEN (2005/02/01)		Penetration Direction	z	· ·			
	WECON (2005/02/01)		Pressure Equivalent Radius	*		n		
	WTEST (2005/02/01)		Plength	*		n		
	WVFPDP (2005/02/01)		Geo Fac	*				
	WCUTBACK (2005/02/01)		W Frac	*				
_	WCONPROD (2005/02/01)		Tubing Dispector	*				
	WCONINJE (2005/02/01)		Tubing Olameter	*				
	WELTARG (2005/02/01)		Tubing Absolute Roughness					
r –	WELPI (2005/02/01)							
ildcard	WEFAC (2005/02/01)							
	WWPAVE (2005/02/01)							
	WPAVEDEP (2005/02/01)							
	COMPLETION (2005/02/01)							
	Others							
	* These well recurrents are set from a wildcards. To ch parameters choose the corresponding wildcard.	nange						

Figure 151 Completion Data

3-2- WPIMULT (Multiplies well connection factors by a given value)

This can be used to multiply the connection transmissibility factors of selected well connections by a specified value. To multiply the transmissibility factors of all the connections in a well, leave items 2-6 defaulted. To multiply the transmissibility factors of a subset of connections in a well, you can identify the subset by their I,J,K location (items 2-4). A subset of connections can also be identified by their completion number (items 5 and 6). If any of items 2-6 are set positive, the multiplying factor applies only to a subset of the connections matching the specified location indices in items 2-4 and a completion number in the range specified by items 5-6. A zero or negative value for a location index (I, J or K) matches any value of that location index. Similarly a zero or negative value for a completion range lower/upper end-point indicates that there is no lower/upper bound on the completion numbers. Figure 152 displays the WPIMULT data. It contains the following data:

- Well Connection Factor Multiplier
 - Multiplier to act on the well's connection transmissibility factors and Kh values
- I-Location of Connecting Grid Block
- J-Location of Connecting Grid Block
- K-Location of Connecting Grid Block
- Index of First Completion
- Index of Last Completion

							ĺ
/ells + ▼ —	Well Recurrents		Keyword Info:				
Well Name	Defined Dates: 2005/02/01	•	Name	Value	Unit	Description	
Well 1	Kaunaada		Well Connection Factor Multiplier	*	-		
	Reywords:		I Location of connecting grid blocks	1	-		
_	WELSPECS (2005/02/01)	*	J Location of connecting grid blocks	1	-		
	▲ Constraints		K Location of connecting grid blocks	1	-		
	WGRUPCON (2005/02/01)		Index of first completion	1	-		
	WCONHIST (2005/02/01)		Index of last completion	1	-		
	WHISTCTL (2005/02/01)						
	WELOPEN (2005/02/01)						
_	WECON (2005/02/01)						
	WTEST (2005/02/01)						
	WVFPDP (2005/02/01)						
	WCUTBACK (2005/02/01)						
	WCONPROD (2005/02/01)	=					
-	WCONINJE (2005/02/01)						
_	WELTARG (2005/02/01)						
	WELP1 (2005/02/01)						
+ -	WEFAC (2005/02/01)						
ildcard	WWPAVE (2005/02/01)						
	WPAVEDEP (2005/02/01)						
	Perforations COMPLETION (2005 (02.01))						
	COMPLETION (2005/02/01)						
	WPINOLT (2005/02/01)						
	Others	1					
	 These well recurrents are set from a wildcards. I parameters choose the corresponding wildcard. 	o change					

Figure 152 WPIMULT Data

4- Others:

4-1- COMPORD (Defines the ordering of well connections)

The COMPORD is used to define the ordering of well connections. Figure 153 displays the COMPORD data. It contains the completion ordering method in which three possibly are available:

- DEPTH: The connections will be ordered according to their vertical depth, from the top downwards. For connections at the same vertical depth, they will be ordered in the sequence they are first declared in Completion.
- INPUT: The connections will be ordered in the sequence that they are first declared in Completion. If you use this option, you must declare the connections in their correct sequence, starting with the connection nearest the wellhead then working along the wellbore towards the bottom or toe of the well.
- TRACK: RETINA will determine the order of the connections by attempting to trace the well track through the grid from the grid blocks in which the connections are located. If this fails, or if all the connections in the well are vertical, DEPTH ordering will be used.

🍭 Well Manager									
Well Manager									
									L & .
Wells + -	Well Recurrents		Keyword Info:						
Well Name	Defined Dates: 2005/02/01	•	Name	Value		Unit	Description		
1 Well 1	Keywords:	_	Completion Ordering Method	Track	Ŧ	-			
	Constraints								
	WGRUPCON (2005/02/01)								
	WCONHIST (2005/02/01)								
	WHISTCTL (2005/02/01)								
	WELOPEN (2005/02/01)								
	WECON (2005/02/01)								
	WTEST (2005/02/01)								
	WVFPDP (2005/02/01)								
	WCUTBACK (2005/02/01)								
	WCONPROD (2005/02/01)								
	WCONINJE (2005/02/01)								
	WELTARG (2005/02/01)	Ξ							
	WELPI (2005/02/01)								
	WEFAC (2005/02/01)								
+ -	WWPAVE (2005/02/01)								
Wildowsk	WPAVEDEP (2005/02/01)								
wildcard	Perforations								
	COMPLETION (2005/02/01)								
	WPIMULT (2005/02/01)								
	▲ Others								
	COMPORD (2005/02/01)	-							
	* These well recurrents are set from a wildcards. To change								
	parameters choose the corresponding wildcard.				_				
Metric (ECLIPSE™) ▼ 0.00	Import Eclipse Well and Group Data Import Eclipse	We	ll Data Can	cel		N	alidate First Step		ок
		_							

Figure 153 COMPORD Data

For defining a new well recurrent (after choosing a desired date) the + button must be used. Clicking on this button the Figure 86 list is displayed. User can select and define each of the well recurrent data with a user friendly method just using one click on them. User can define a specific well recurrent for all of the wells with a desired well base name, in the wildcard section of the Figure 154. The button of the + and - are used to define a wildcard and remove related properties, respectively.

Figure 154- Adding Well Recurrents

Two importer buttons exist in this window:

- Import Eclipse Well and Group Data: Both well and group data are imported using this importer. In this case, you can see added groups in "Well Group Manager" and wells in "Well Manager" dialogs.
- Import Eclipse Well Data: Only wells and their properties are added, no change is made on the group manager window.

A validator is also placed in this window, in which user can choose one of three exist validation options for scheduling data.

3-3-3-Well Group Manager

The window of Figure 155 will be opened when selecting "Well Group Manager" button, from the data tab. User can start to define group from "Group Dates" section using + button. In the "Group Tree" section, the new group can be defined by selecting the + button (Figure 156). After defining desired groups, the wells might be attached to them using "Group Well Assignment" section (Figure 157).

ell Group Manager				_ م
iroup Dates	Group Tree	Group Well Ass	ignment	
+ -	+ -	Well Name	Group Name	Date
efined Dates: 2005/02/01	Group Names			
Dates				
005/02/01				
1etric (ECLIPSE™) ▼			Cancel	ОК

roup Dates		Group Tree	Group Well A	ssianment		Ċ
+ -		+ -	Well Name	Group Name	Date	
fined Datas	2005/02/01	- Group Names	101	Group 9	2005/02/01	
enneu Dates:	2003/02/01		102	Group 10	2005/02/01	
ates		GROUP 1	103	-	-	
05/02/01		A Group 1	104	Group 14	2005/02/01	
03/02/01		⊿ Group 2	P01	-	-	
		⊿ Group 3	P02	-	-	
		Group 4	P03	-	-	
		⊿ Group 5	P04	-	-	
		⊿ Group 6	P05	-	-	
		⊿ Group 7	P06	-	-	
		⊿ Group 8				
		Group 9				
		Group 10				
		Group 11				
		Group 12				
		⊿ Group 13				
		Group 15				
		Group 14				

Figure 156- Define Group

all Group Manager					Г
en Group Manager					53
Group Dates		Group Tree	Group Well A	ssignment	
+ -		+ -	Well Name	Group Name	Date
Defined Dates: 2005/02/01	~	Group Names	I01	-	-
		⊿ FIELD	I02		
Dates		GROUP 1	I03	-	-
2005/02/01		⊿ Group 1	I04	Group 14 🔫	2005/02/01
		⊿ Group 2	P01	- GROUP 1	-
		⊿ Group 3	P02	Group 4	-
		Group 4	P03	Group 9	-
		⊿ Group 5	P04	Group 10	-
		⊿ Group 6	P05	Group 11 Group 12	-
		⊿ Group 7	P06	Group 12 Group 15	-
		⊿ Group 8		Group 14	
		Group 9			
		Group 10			
		Group 12			
		Group 12			
		Group 15			
		Group 14			
		oroup 11			

Figure 157- Well Assignment to Groups

3-3-4-Group Recurrent Manager

The button of the "Group Recurrent Manger" is used to manage group recurrent (Figure 158). This window consists of three tables of "Well Group List", "Group Recurrent" and "Group constraint". The desired group and date are selected from "Well Group List" and "Group Recurrent", respectively. Afterward user can enter necessary constraints and provide their values (Figure 159).

(Comp Recurrent Mag	anager				
Group Recurrent Ma	anager				ц С С
Groups Well Group List:	Group Recurrents	Group Co	nstraint:		
FIELD GROUP 1	Defined Dates: 2005/02/01 Constraints:	Name	Value	Unit	
Metric (ECLIPSE™)	• 0.00				Cancel

Figure 158- Group Recurrent Manager

oup Recurrent Man	ager					بر
Groups ell Group List:	Group Recurrents		Group Constraint:			000
TELD	Defined Dates 200	15/02/01	- Name	Value		Unit
GROUP 1	Defined Dates. 200	13/02/01	Controlled Phase	OIL	-	-
	Constraints:		Injection Rate Control Mode	RATE	-	-
	GCONINJE (2005/0	2/01)	Surface Injection Rate Target	*		m³/da
	GCUTBACK (2005/	02/01)	Total Reservoir Volume Injection Rate	*		m³/da
			Reinjection Fraction Target	*		-
			Total Voidage Replacement Fraction Target	*		-
			Is Group Free to Parent Control			-
			Injection Guide Rate	*		-
			Guide Rate Definition	VOID	-	-
			Target Group For Reinjection Fraction			-
			Target Group for Voidage Replacement Fraction			-
			J(

Figure 159- Group Constraints

Group Recurrents:

1- GCONINJE (Injection rate controls/limits for groups/field)

This specifies the injection targets and limits for groups. Figure 160 displays the GCONINJE data. It contains following data:

- Controlled Phase
 - WATER: Water injection controls
 - o GAS: Gas injection controls
 - o OIL: Oil injection controls
- Injection Rate Control Mode
 - o NONE: No immediate control of injection rate
 - RATE: The group/field surface injection rate of the controlled phase
 - RESV: The group/field reservoir volume injection rate of the controlled phase will be controlled so that the total reservoir volume injection rate of the group/field meets the related target
 - REIN: The group/field surface injection rate of the controlled phase is controlled to equal the group/field production rate of the phase times the reinjection fraction

- VREP: The group/field reservoir volume injection rate of the controlled phase is controlled so that the total reservoir volume injection rate of the group/field equals its production voidage rate times the voidage replacement fraction
- FLD: The group is immediately under control from a higher level group or the field, injecting its share of the higher group's or field's target rate, according to its guide rate
- Surface Injection Rate Target
 - Surface injection rate target or upper limit for the controlled phase.
- Total Reservoir Volume Injection Rate
 - o Total reservoir volume injection rate target or upper limit. If a nondefault value is specified here, the controlled phase in item 1 is declared the top-up phase. Its target or limiting reservoir volume injection rate will be equal to the value specified here minus the reservoir volume injection rate of the other phases. The phase injection rate is calculated to top up the total group or field injection to the required reservoir volume rate, after allowing for any injection of the other phases. There can be only one top-up phase at any given time in the simulation run.
- Reinjection Fraction Target
 - Reinjection fraction target or upper limit for the controlled phase.
 The reinjection fraction is applied to the group or field production rate of the phase in item 1.
- Total Voidage Replacement Fraction Target
 - o If a non-default value is specified here, the phase in item 1 is declared the 'top-up' phase. Its target or limiting reservoir volume injection rate will be equal to the value specified here times the group/field production voidage rate, minus the reservoir volume injection rate of the other phases. The phase injection rate is calculated to 'top up' the total group or field injection to the required voidage replacement fraction, after allowing for any injection of the other phases. There can be only one 'top up' phase at any given time in the simulation run.
- Is Group Free to Parent Control?

- Checked: Injection from the group is cut back as necessary to meet any rate target/limit imposed at a higher level
- Unchecked: The group injects at its own capacity or target irrespective of any higher level rate target or limit
- Injection Guide Rate
 - Group's injection guide rate for the controlled phase, a dimensionless number governing the group's share of a higher level injection target.

A group needs a guide rate only if it is required to inject a specified proportion of a higher level rate target. The group is then placed under rate control, with a target rate set in proportion to its guide rate. It can either be set to a fixed surface rate or reservoir volume rate, or adjusted each time step to reflect the group's voidage replacement requirements. If no guide rate is specified, the group's share of a higher level injection target is governed by the guide rates of its subordinate injection wells, or any subordinate groups with injection guide rates.

The group will essentially be transparent to higher level injection targets, which will be apportioned directly down to its subordinate wells or groups with guide rates.

- Guide Rate Definition
 - RATE: The guide rate applies to group's surface injection rate (so the surface injection rate target will be in proportion to the guide rate).
 - RESV: The guide rate applies to group's reservoir volume injection rate (so the reservoir volume injection target is in proportion to the guide rate).
 - VOID: The guide rate is set at the beginning of each time step equal to the group's voidage production rate. This setting can be used to apportion an injection target between groups in proportion to their voidage production rates.
 - NETV: The guide rate is set at the beginning of each time step equal to the group's net voidage rate (that is its voidage production rate minus the reservoir volume injection rate of any other phases). This setting can be used to apportion an injection target between groups in proportion to their top-up needs for voidage replacement. It can

only be applied if the controlled phase in item 1 is the 'top-up' phase.

- NONE: the group has a injection guide rate for this phase.
- Target Group for Reinjection Fraction
- Target Group for Voidage Replacement Fraction

2 Group Recurrent Mana	ger			
Group Recurrent Mana	iger			ر ب
Groups Well Group List:	Group Recurrents + ▼	Group Constraint:		
FIELD	Defined Dates: 2005/02/01	Name	Value	Unit
GROUP 1	Construints	Controlled Phase	WATER	v -
	Constraints:	Injection Rate Control Mode	NONE	v -
	GCONINJE (2005/02/01)	Surface Injection Rate Target	*	m³/day
		Total Reservoir Volume Injection Rate	*	m³/day
		Reinjection Fraction Target	*	-
		Total Voidage Replacement Fraction Target	*	-
		Is Group Free to Parent Control		-
		Injection Guide Rate	*	-
		Guide Rate Definition	NONE	v -
		Target Group For Reinjection Fraction		-
		Target Group for Voidage Replacement Fraction		-
Metric (ECLIPSE™) ▼	0.0		Cance	ОК

Figure 160 GCONINJE Data

2- GCONPROD (Production rate controls/limits for groups/field)

This sets the production rate targets and limits for groups using the guide rate method of group control. Figure 161 displays the GCONPROD data. It contains following data:

- Production Rate Control Mode
 - o NONE: No immediate control of production rate
 - ORAT: Group/field oil production rate is controlled to meet the target
 - WRAT: Group/field water production rate is controlled to meet the target
 - GRAT: Group/field gas production rate is controlled to meet the target

- LRAT: Group/field liquid production rate is controlled to meet the target
- RESV: Group/field reservoir fluid volume production rate is controlled to meet the target
- PRBL: Group/field reservoir fluid volume production rate is controlled to meet the target production balancing fraction
- FLD: Group is immediately under control from a higher level group or the field, producing its share of the higher group's or field's target rate, according to its guide rate
- Oil Production Rate Target
- Water Production Rate Target
- Gas Production Rate Target
- Liquid Production Rate Target
- Procedure on Exceeding a Limit
 - o NONE: Do nothing
 - o CON: Shut worst-offending connection in worst-offending well
 - PLUS_CON: Shut worst-offending connection and all below it in worst-offending well (see COMPORD)
 - o WELL: Shut or stop worst-offending well
 - RATE: Control group/field production rate to equal the violated upper limit
- Is Group Free to Higher Control?
 - Checked: production from the group is cut back as necessary to meet any rate target imposed at a higher level
 - Unchecked: the group produces at its own capacity or target irrespective of any higher level rate target
- Group's Production Guide Rate
 - This is a dimensionless number governing the group's share of a higher level production rate target. A group needs a guide rate only if it is required to produce a specified proportion of a higher level rate target. The group is then placed under rate control, with a target rate set in proportion to its guide rate. It can either be set for a specified phase, or calculated from the group's production potentials or its injection rate. If the guide rate phase differs from

the phase under control, the guide rate is translated into a guide rate for the controlled phase using the group's production ratios at the beginning of each time step. If no guide rate is specified, the group's share of a higher level rate target is governed by the guide rates of its subordinate wells, or any subordinate groups with guide rates. (The well guide rates are set by default equal to the wells' production potentials, but can be specified directly by using the WGRUPCON constraint). The group is essentially 'transparent' to higher level production rate targets, which will be apportioned directly down to its subordinate wells or groups with guide rates.

- Definition of Group's Guide Rate
 - OIL: The group's guide rate applies to the oil phase.
 - WAT: The group's guide rate applies to the water phase.
 - GAS: The group's guide rate applies to the gas phase.
 - LIQ: The group's guide rate applies to the liquid phase.
 - RESV: The group's guide rate applies to the Reservoir Fluid.
 - INJV The group's guide rate is set at the beginning of each time step equal to the group's reservoir volume injection rate. This can be useful `when the field has a production balancing target that is apportioned among the groups in proportion to their injection rates.
 - POTN: The group's guide rate is set at the beginning of each time step equal to the group's production potential - which is the sum of the production potentials of all its subordinate open producers;
 - FORM: The group's guide rate is calculated at specified intervals from a formula involving its production potentials, defined with the GUIDERAT. This option can be used to decrease the contribution from groups with high GOR or water cut.
 - NONE: the group has a production guide rate. Higher level production targets will be apportioned directly down to its subordinate wells, or any subordinate groups with guide rates.
- Procedure on Exceeding Water Rate
 - o NONE: Do nothing
 - o CON: Shut worst-offending connection in worst-offending well
 - PLUS_CON: Shut worst-offending connection and all below it in worst-offending well (see COMPORD)

- WELL: Shut or stop worst-offending well
- RATE: Control group/field production rate to equal the violated upper limit
- Procedure on Exceeding Gas Rate
 - o NONE: Do nothing
 - CON: Shut worst-offending connection in worst-offending well
 - PLUS_CON: Shut worst-offending connection and all below it in worst-offending well (see COMPORD)
 - o WELL: Shut or stop worst-offending well
 - RATE: Control group/field production rate to equal the violated upper limit
- Procedure on Exceeding Liquid Rate
 - o NONE: Do nothing
 - o CON: Shut worst-offending connection in worst-offending well
 - PLUS_CON: Shut worst-offending connection and all below it in worst-offending well (see COMPORD)
 - o WELL: Shut or stop worst-offending well
 - RATE: Control group/field production rate to equal the violated upper limit
- Reservoir Fluid Volume Production Rate Target
 - The procedure on exceeding this limit is always RATE.
- Production Balancing Fraction Target
 - This limits the group's reservoir fluid volume production rate to the specified fraction (or multiple) of the group's reservoir fluid volume injection rate.

iroup Recurrent Mana	ger			<u>بر</u>
Groups Vell Group List:	Group Recurrents + ▼ -	Group Constraint:		000
FIELD	Defined Dates: 2005/02/01	- Name	Value	Unit
GROUP 1		Production Rate Control Mode	NONE - No Control	v -
	Constraints:	Oil Production Rate Target	*	m³/day
	GCONINJE (2005/02/01)	Water Production Rate Target	*	m³/day
	GCONPROD (2005/02/01)	Gas Production Rate Target	*	m³/day
		Liquid Production Rate Target	*	m³/day
		Procedure on Exceeding a Limit	NONE - Do Nothing	-
		Is Group free to Higher Control		-
		Group's Production Guide Rate	*	-
		Definition of Group's Gudie Rate	NONE - No Guide Rate	v -
		Procedure on Exceeding Water Rate	NONE - Do Nothing	
		Procedure on Exceeding Gas Rate	NONE - Do Nothing	* -
		Procedure on Exceeding Liquid Rate	NONE - Do Nothing	* -
		Reservoir Fluid Volume Production Rate Target	*	m³/day
		Production Balancing Fraction Target	*	-

Figure 161 GCONPROD Data

3- GECON (Economic limit data for groups and the field)

This is used to put an economic limit data for groups and field. Figure 162 displays the GECON data. It contains following data:

- Minimum Oil Production Rate
 - If the group (or field) oil production rate falls below the specified minimum, all the producers in the group (or field) are shut or stopped (see WELSPECS). A zero or negative value switches off this constraint.
- Minimum Gas Production Rate
 - If the group (or field) gas production rate falls below the specified minimum, all the producers in the group (or field) are shut or stopped (see WELSPECS). A zero or negative value switches off this constraint.
- Maximum Group or Field Water Cut
- Maximum Group or Field Gas Oil Ratio
- Maximum Group or Field Water Gas Ratio
- Workover Procedure
 - o NONE: Do nothing
 - o CON: Shut worst-offending connection in worst-offending well
 - PLUS_CON: Shut worst-offending connection and all below it in worst-offending well

- WELL: Shut or stop worst-offending well (see WELSPECS)
- o ALL: Shut all producers subordinate to the group
- Maximum Open Well
 - This option prevents wells from being opened automatically (AUTO in WCONPROD, WCONINJE, and WELOPEN) or from the drilling queue (QDRILL). if the number of subordinate wells would violate this limit. The limit does not prevent wells being opened manually ('OPEN' in WCONPROD and WCONINJE for example), but a warning message is issued if they violate this limit.

2 Group Recurrent Manag	ger				
Group Recurrent Mana	ger				ۍ د د
Groups Well Group List:	Group Recurrents + → →	Group Constraint:			
FIELD	Defined Dates: 2005/02/01	■ Name	Value	Unit	
GROUP 1	Constraints:	Minimum oil production rate Minimum gas production rate	* *	m³/day m³/day	
	GCONINJE (2005/02/01)	Maximum group or field water cut	*	-	
	GCONPROD (2005/02/01)	Maximum group or field gas-oil ratio	*	-	
	GECON (2005/02/01)	Maximum group or field water-gas ratio	*	-	
		Workover procedure	NONE		
		Maximum open well	*	-	
Metric (ECLIPSE™) ▼	0.00			Cancel	ОК

Figure 162 GECON Data

4- GCUTBACK (Group Cutback Limit)

This is used to put a cutback limit for group or filed. Figure 163 displays the GCUTBACK data. It contains following data:

- Water Cut Upper Limit
- Gas Oil Ratio Upper Limit
- Gas Liquid Ratio Upper Limit
- Water Gas Ratio Upper Limit
- Rate Cutback Factor (fraction)
 - This is the ratio of the reduced flow rate to the current flow rate. It should be less than 1.0

- Control Phase
 - o OIL: Reduced oil rate
 - o WAT: Reduced water rate
 - o GAS: Reduced gas rate
 - o LIQ: Reduced liquid rate
 - o RESV: Reduced reservoir fluid volume rate

💐 Group Recurrent Manage	r				
Group Recurrent Manage	er				Ę O
Groups Well Group List:	Group Recurrents + ▼ -	Group Constraint:			
FIELD	Defined Dates: 2005/02/01	Name	Value	Unit	
GROUP 1	Constraints:	Water cut upper limit	*	-	
	GCONINUE (2005/02/01)	Gas-oil ratio upper limit	*	•	
	GCONPROD (2005/02/01)	Gas-liquid ratio upper limit	*	•	
	GECON (2005/02/01)	Rate cutback factor (fraction)			
	GCUTBACK (2005/02/01)	Control Phase	-		
		-			
		-			
Metric (ECLIPSE™) ▼	0.00			Ca	ncel OK

Figure 163 GCUTBACK Data

3-3-5-VFP Manager

VFP (Vertical Flow Performance) manager is available by clicking "Vertical Flow Performance Manager" button, in which user can define VFP tables. The data can be entered by user, one by one or using Eclipse importer facility.

💐 VFP Manager		
VFP Manager		\leq
VFP List	VFP Data	
VFP Injection Name Type		
+ — ab		
VFP Production Name Type		
Metric (Eclipse) 🔻 0.00	Import Eclipse VFP Cancel	ОК

Figure 164- VFP Manager

There are two separate tables of production and injection wells in the VFP table dialog (Figure 164).

For adding a new injection VFP tables (Figure 165) use + button same as RETINA other windows, note that, the auto naming ability exist for this window, also. User must choose the fluid type from "Flow Rate", pressure type from "Fixed Pressure" and tabulated parameter from "Tabulated Quantity" lists. Then the depth of the well and table values are entered. After entering the required values and updating table, the data VFP tables are created (Figure 166); afterward, user must enter the tabulated BHP values. Note that there are copy and paste facility for the VFP tables. The VFP table defining procedure for production wells are same as the injection one, except in input data (Figure 167).

💐 VFP Manager		
VFP Manager		\leq
VFP List	VFP Data	
+ — ab	OII FI THP	▼ Tabula BHP ▼
VFP Injection Name Type	Bottom Hole Depth: 0.0 ft	
<u> </u>	Flow Rate (STB/day)	Fix Pressure (psi)
	1 2.0 1	1000.0
۲ III +	2 3.0 2	1200.0
it _ ab	3 4.0 3	1600.0
VFP Production Name Type ☆ ☆ ↓ ↓		Update Table
· · · · · · · · · · · · · · · · · · ·		
< III >		
Field	[Import Ec	clipse VFP Cancel OK

Figure 165- Define VFP Tables for Injection well

D Managara							1
P Manager							\sim
FP List	VFP	Data					
+ — ab	G			гнр		Tabula RHD	
VFP Injection Name Type	Ľ			i ir			
1 VFP Injection Injecti		the res I lealer Dentiles	0.0				
	вс	ntom Hole Depth:	0.0		π		
		Flow Rate (STR/day)				Fix Pressure (nsi)	
	1	2.0			1	1000.0	
4 III >	2	3.0			2	1200.0	
	3	4.0	1		3	1600.0	
+ — ab							
VFP Production Name Tvt						Upd	ate Table
		Oil Flow (STB/day)	THP (psi)	BHP (psi)			
	1	2.0	1000.0	0.0			=
	2	3.0	1000.0	0.0			
	3	4.0	1000.0	0.0			
	4	2.0	1200.0	0.0			
	-	20	1000.0	0.0			
ield 🗾 0.00				Imp	ort Ecli	ipse VFP Cancel	ОК

Figure 166- Injection Well VFP Table

2 VFP Manager	
VFP Manager	
VFP List + - ab VFP Injection Name Type 1 VFP Injection Injection	VFP Data Flov OIL Fixed Pres: THP Water Far WOR Gas I GOR Artificial Lift C NONE Tabulated C BHP K
+ - ab	Flow Rate (STB/day) Fix Pressure (psi) Water Fraction (-) Gas Fraction (Mscf/STB Artificial Lift Quantity (- 1 0.0 1 0.0 1 0.0 1 0.0 - - - - - - - - - - - - - -
1 VFP Production ↓ ↓ ↓ ↓ ↓	Update Table
Field • 0.00	Import Eclipse VFP Cancel OK

Figure 167- Production Well VFP Table

3-3-6-Well Recurrent Manager

Clicking on the "Well Recurrent Manager", user can observe well recurrents (Figure 168). There are three choices for observing the well recurrent using 6 button:

- 1- Sort by Well
- 2- Sort by Well Recurrent
- 3- Sort by Date (Time)

All of the recurrents will be displayed if user chooses \mathbb{E} . If there is no need to observe well recurrents the button of \mathbb{E} should be selected. For example if user selects "Sort by Well" and then clicks on \mathbb{E} , the Figure of 98 is shown. It should be noted that, the data in this section are all read only.

🍭 Well R	ecurrent Explorer					
Well Red	urrent Explorer					
63 - 3	1 11					
Vell Recu	rrents:		Paramete	rs:		
Well	Time (day) - Date	Recurrent	Name	Value	Unit	
⊳ I01						
⊳ 102						
⊳ I 03						
⊳ 104						
P01						
⊳ P02						
⊳ P03						
▷ P04						
> P05						
▷ P00						
Metric (ECLIPSE™) ▼ 0.00					Close

Figure 168- Well Recurrent Manager

💐 Well F	Recurrent Explorer							x		
Well Re	Well Recurrent Explorer									
69 🗕	12 II									
Well Recu	urrents:			Paramete	rs:					
Well	Time (day) - Date	Recurrent		Name	Value	Unit	1			
⊿ I01										
	0.0 - 2005/02/01	WELSPECS								
	0.0 - 2005/02/01	COMPLETION								
	0.0 - 2005/02/01	COMPLETION	=							
	0.0 - 2005/02/01	COMPLETION								
	0.0 - 2005/02/01	COMPLETION								
	0.0 - 2005/02/01	WCONINJH								
	0.0 - 2005/02/01	WELTARG								
	365.0 - 2006/02/01	WCONINJH								
	730.0 - 2007/02/01	WCONINJH								
	1095.0 - 2008/02/01	WCONINJH								
⊿ I02										
	0.0 - 2005/02/01	WELSPECS								
	0.0 - 2005/02/01	COMPLETION								
	0.0 - 2005/02/01	COMPLETION								
	0.0 - 2005/02/01	COMPLETION	-							
Metric	(ECLIPSE™) ▼ 0.00]					Close			

Figure 169- Displaying Options of Well Recurrents

3-3-7-Reservoir Recurrent Manager

The Reservoir recurrent manager window which has been shown in Figure 170 includes following recurrents:

• DRSDT

- MULTFLT
- TUNING
- MULTREGT

Like other windows of RETINA, the + and – buttons are used to define and remove defined recurrents. The recurrents can be defined in different defined dates, which can be selected from "Defined Dates" list; in such cases the date added to recurrent nod as a child (Figure 171).

The DRSDT controls the rate at which the solution gas-oil ratio is allowed to rise; two parameters of "Gas Resolution Maximum Rate" and "Option Flag" should be entered (Figure 171). The first one represents the maximum rate at which the solution gas-oil ratio in any grid block is allowed to increase. The second item is a flag including FREE and ALL options:

- "ALL": Apply the DRSDT limit to all cells
- "FREE": Apply the DRSDT limit only to cells containing free gas

Reservoir Recurrent M	anager			_ D X
Reservoir Recurrent M	lanager			B
Defined Dates: 2005/02/	/01 🔹			
+				
Reservoir Recurrents				
DRSDT				
MULTFLT				
⊿ TUNING				
2005/02/01				
MULTREGT				
Metric (ECLIPSE™) ▼	0.00		Cancel	ОК

Figure 170- Reservoir Recurrent Manager

2 Reservoir Recurrent Manager				
Reservoir Recurrent Manager				
Defined Dates: 2005/02/01	Reservoir Recurrent Data Paramet	ers:		
	Name	Value	Unit	
+	Gas Resolution Maximum Rate		/day	
Reservoir Recurrents	Option Flag	ALL -	-	
DRSDT				
2005/02/01				
MULTFLT				
▲ TUNING				
2005/02/01				
MULTREGT				
			1	
Metric (ECLIPSE™) ▼ 0.00				Cancel OK

Figure 171- Data of DRSDT

The MULTFLT can be used to modify the transmissibility across a fault using either the FAULTS keyword or "Fault Manager" window. According to Figure 172 the essential data for MULTFLT are fault name and transmissibility multiplier.

Reservoir Recurrent Manag	ger			
Reservoir Recurrent Mana	ager			<u> </u>
2007/02/01	Reservoir Recurrent Data Par	rameters:		•
Defined Dates: 2007/02/01	Name	Value	Unit	
+	Fault	-	-	
Reservoir Recurrents	Transmissibility Multiplier	*	-	
DRSDT				
2005/02/01				
▲ MULTFLT				
2007/02/01				
▲ TUNING				
2005/02/01				
MULTREGT				
Metric (ECLIPSE™) ▼ 0.	.00			Cancel OK
		Figure 172-	Data of MULTFLT	
				Page 22

The TUNING is used to set simulator control parameters which are displayed in the Figure 173. The core number management for parallel simulating is available here. This dialog should be used with great care.

Defined Date: 2007/02/01 Reservoir Recurrent Data Parameters:	Reservoir Recurrent Mana	ger ager			<u></u> ර
Defined Dates: 2007/02/01 Reservoir Recurrent Data Parameters:					
Defined Dates: 2007/02/01 Name Value Unit Ame Value Unit Reservoir Recurrents Ame 2005/02/01 - A DRSDT Max. Iteration Count 20 - 2005/02/01 Max. Well Sat. Change Per Inner Iteration * - 2005/02/01 Max. Well Sat. Change Per Iteration * - MULTFLT Max. Well Sat. Change Per Iteration * - 2005/02/01 Max. Well Sat. Change Per Iteration * - MULTREGT Max. Well Pressure Change Per Iteration * Bar Max. Well Pressure Change Per Inner Iteration * Bar Max. Well Pressure Change Per Inner Iteration * Bar Max. Well Pressure Change Per Inner Iteration * Bar Max. Well Pb Change Per Inner Iteration * Bar Max. Well Pb Change Per Inner Iteration * Bar Max. Well Pb Change Per Inner Iteration * Bar Max. Well Pb Change Per Inner Iteration * Mar Max. Well Pb Change Per Inner Iteration * Mar Max. Well Pb Ch		Reservoir Recurrent Data Parameters			· · · · ·
Name Value Unit Prefered Iteration Count * - Reservoir Recurrents Max. Iteration Count 2000 - A DRSDT Max. Group Control Iteration Count * - Max. Well Sat. Change Per Inner Iteration * - MULTFLT Max. Saturation Change Per Iteration * - 2005/02/01 Max. Vell Sat. Change Per Iteration * - MULTFLT Max. Saturation Change Per Iteration * - 2005/02/01 Max. Well Pressure Change Per Iteration * - MULTREGT Max. Well Pressure Change Per Inner Iteration * Bar MuLTREGT Max. Well Pb Change Per Inner Iteration * Bar Max. Well Pb Change Per Inner Iteration * Bar Max. Well Pb Change Per Inner Iteration * Bar Max. Well Pb Change Per Inner Iteration * Bar Max. Well Pb Change Per Inner Iteration * Bar Max. Well Pb Change Per Inner Iteration * Bar Max. Well Pb Change Per Inner Iteration * Mar Max. Well Pb Change Per	Defined Dates: 2007/02/01		1	Lu s	1
Reservoir RecurrentsMax. Iteration Count20-A DRSDTMax. Group Control Iteration Count20-2005/02/01Max. Group Control Iteration Count*-Max. Well Sat. Change Per Inner Iteration*-2007/02/01Max. Well Sat. Change Per Iteration*-Max. Well Sat. Change Per Iteration*-2007/02/01Max. Well Sat. Change Per Iteration*-MultTFLTMax. Well Sat. Change Per Iteration*-2005/02/01Max. Well Pressure Change Per Iteration*BarMULTREGTMax. Well Pressure Change Per Inner Iteration*BarMult REGTMax. Well Pchange Per Inner Iteration*BarMax. Well Pb Change Per Inner Iteration*BarMax. Well Rb C	±	Name	Value	Unit	
Reservoir Recurrents Max. Heration Count 20 - DRSDT Max. Group Control Iteration Count * - 2005/02/01 Max. Well Sat. Change Per Inner Iteration * - MULTFLT Max. Sturation Change Per Iteration * - 2007/02/01 Max. Sturation Change Per Iteration * - MULTREGT Max. Well Sat. Change Per Iteration * - MULTREGT Max. Well Pressure Change Per Iteration * Bar Max. Well Per Sure Change Per Iteration * Bar Max. Well Per Sure Change Per Inner Iteration * Bar Max. Well Pb Change Per Inner Iteration * Bar Max. Well Pb Change Per Inner Iteration * Bar Max. Well Pb Change Per Inner Iteration * Bar Max. Well Pb Change Per Inner Iteration * Bar Max. Well Pb Change Per Inner Iteration * Bar Max. Well Pb Change Per Inner Iteration * Mar Max. Well Pb Change Per Inner Iteration * Mar Max. Well Pb Change Per Inner Iteration * Mar Max.	T · -	Prefered Iteration Count	^	-	
A DRSDT Max. Group Control Iteration Count * - 2005/02/01 Max. Well Sat. Change Per Inner Iteration * - MULTFLT Max. Saturation Change Per Iteration * - 2007/02/01 Max. Saturation Change Per Iteration * - MULTREGT Max. Well Sat. Change Per Iteration * Bar MULTREGT Max. Well Pressure Change Per Iteration * Bar Max. Well Per Sure Change Per Iteration * Bar Max. Well Per Sure Change Per Iteration * Bar Max. Well Pb Change Per Inter Iteration * Bar Max. Well Pb Change Per Inter Iteration * Max Max. Well Pb Change Per Inter Iteration * Max Max. Well Pb Change Per Inter Iteration * Max Max. Well Pb Change Per Inter Iteration * Max Max. Well Pb Change Per Inter Iteration	Reservoir Recurrents	Max. Iteration Count	20	-	
2005/02/01 Max. Well Sat. Change Per Inner Iteration * - 4 MULTFLT Max. Well Sat. Change Per Iteration * - 2007/02/01 Max. Saturation Change Per Iteration * - 4 TUNING Max. Vell Pressure Change Per Iteration * - 2005/02/01 Max. Well Pressure Change Per Iteration * Bar MULTREGT Max. Well Pressure Change Per Inner Iteration * Bar MuLTREGT Max. Well Pressure Change Per Inner Iteration * Bar Max. Well Pressure Change Per Inner Iteration * Bar Max. Well Pressure Change Per Inner Iteration * Bar Max. Well Pb Change Per Inner Iteration * Bar Max. Well Pb Change Per Inner Iteration * Bar Max. Well Pb Change Per Inner Iteration * Bar Max. Well Sch Change Per Inner Iteration * Mar Max. Well Pb Change Per Inner Iteration * Mar Max. Well Sch Change Per Inner Iteration * Mar Max. Well Sch Change Per Inner Iteration * Mar Max. Well Sch Change Per Inner Iteration *	A DRSDT	Max. Group Control Iteration Count	*	-	
MULTRET Max. Well Sat. Change Per Iteration * - 2007/02/01 Max. Saturation Change Per Iteration * - TUNING Max. Pressure Change per Iteration * - 2005/02/01 Max. Well Pressure Change Per Iteration * Bar MULTREGT Max. Well Pressure Change Per Iteration * Bar MULTREGT Max. Well Pressure Change Per Iteration * Bar Max. Well Pb Change Per Iteration * Satr Max. Time Step * day	2005/02/01	Max. Well Sat. Change Per Inner Iteration	*	-	
2007/02/01 Max. Saturation Change Per Iteration * - INUNG Max. Pressure Change per Iteration * Bar 2005/02/01 Max. Well Pressure Change Per Iteration * Bar MULTREGT Max. Well Pressure Change Per Iteration * Bar MULTREGT Max. Well Pressure Change Per Inner Iteration * Bar MAX. Well Pressure Change Per Inner Iteration * Bar Max. Well PC Change Per Inner Iteration * Bar Max. Well PC Change Per Inner Iteration * Bar Max. Well PC Change Per Inner Iteration * Bar Max. Well PC Change Per Inner Iteration * Bar Max. Well PS Change Per Inner Iteration * Bar Max. Well PS Change Per Inner Iteration * Bar Max. Well PS Change Per Inner Iteration * Mar Max. Well PS Change Per Inner Iteration * Mar Max. Time Step * day Min. Time Step * • Mumber of Parallel Threads 2 *	▲ MULTFLT	Max. Well Sat. Change Per Iteration	*	-	
Image: Number of Parallel Threads Max. Pressure Change per Iteration * Bar NULTREGT Max. Well Pressure Change Per Iteration * Bar MULTREGT Max. Well Pressure Change Per Inner Iteration * Bar MULTREGT Max. Well Pressure Change Per Inner Iteration * Bar Max. Well Pressure Change Per Inner Iteration * Bar Max. Well P Change Per Inner Iteration * Bar Max. Well P Change Per Inner Iteration * Bar Max. Well P Change Per Inner Iteration * Bar Max. Well PS Change Per Inner Iteration * Bar Max. Well PS Change Per Inner Iteration * Bar Max. Well PS Change Per Inner Iteration * Bar Max. Well PS Change Per Inner Iteration * SM ⁴ /M ⁴ Well-bore Volume * Mar Max. Time Step * day Min. Time Step * • Number of Parallel Threads 2 *	2007/02/01	Max. Saturation Change Per Iteration	*	-	
2005/02/01 Max. Well Pressure Change Per Iteration * Bar MULTREGT Max. Well Pressure Change Per Inner Iteration * Bar Max. Well P Change Per Inner Iteration * Bar Max. Well P Change Per Inner Iteration * Bar Max. Well P Change Per Inner Iteration * Bar Max. Well P Change Per Inner Iteration * Bar Max. Well P Change Per Inner Iteration * Bar Max. Well PC Change Per Inner Iteration * Bar Max. Well PC Change Per Inner Iteration * Bar Max. Well S Change Per Inner Iteration * Bar Max. Well S Change Per Inner Iteration * Mar Max. Well S Change Per Inner Iteration * Mar Max. Well S Change Per Inner Iteration * Mar Max. Well S Change Per Inner Iteration * Mar Max. Well S Change Per Inner Iteration * Mar Max. Well S Change Per Inner Iteration * Mar Max. Well S Change Per Inner Iteration * Mar Max. Time Step * day Rock Compaction Transmissibility Treatment EXPLICIT<	⊿ TUNING	Max. Pressure Change per Iteration	*	Bar	
MULTREGT Max. Well Pressure Change Per Inner Iteration * Bar Max. Well Pb Change Per Inner Iteration * Bar Max. Well Pb Change Per Inner Iteration * Bar Max. Well Pb Change Per Inner Iteration * Bar Max. Well Pb Change Per Inner Iteration * Bar Max. Well Pb Change Per Inner Iteration * Bar Max. Well Rb Change Per Inner Iteration * Bar Max. Well Rb Change Per Inner Iteration * Bar Max. Well Rb Change Per Inner Iteration * Bar Max. Well Rb Change Per Inner Iteration * Mar Max. Time Step * day Min. Time Step * • Rock Compaction Transmissibility Treatment EXPLICIT<	2005/02/01	Max. Well Pressure Change Per Iteration	*	Bar	
Max. Well Pb Change Per Inner Iteration * Bar Max. Well Pb Change Per Iteration * Bar Max. Well Pb Change Per Iteration * Bar Max. Well RS Change Per Inner Iteration * Bar Max. Well RS Change Per Inner Iteration * SM ³ /M ³ Well-bore Volume * day Max. Time Step * day Min. Time Step * - Number of Parallel Threads 2 -	MULTREGT	Max. Well Pressure Change Per Inner Iteration	*	Bar	
Max. Well Pb Change Per Iteration * Bar Max. Pb change per iteration * Bar Max. Well RS Change Per Inner Iteration * SM ³ /M ³ Well-bore Volume * m ³ Max. Time Step * day Min. Time Step * day Rock Compaction Transmissibility Treatment EXPLICIT - Number of Parallel Threads 2 -		Max. Well Pb Change Per Inner Iteration	*	Bar	
Max. Pb change per iteration * Bar Max. Well RS Change Per Inner Iteration * SM ³ /M ³ Well-bore Volume * m ³ Max. Time Step * day Min. Time Step * day Rock Compaction Transmissibility Treatment EXPLICIT - Number of Parallel Threads 2 -		Max. Well Pb Change Per Iteration	*	Bar	
Max. Well RS Change Per Inner Iteration * SM ³ /M ³ Well-bore Volume * m ³ Max. Time Step * day Min. Time Step * day Rock Compaction Transmissibility Treatment EXPLICIT - Number of Parallel Threads 2 -		Max. Pb change per iteration	*	Bar	
Well-bore Volume * m³ Max. Time Step * day Min. Time Step * day Rock Compaction Transmissibility Treatment EXPLICIT - Number of Parallel Threads 2 -		Max. Well RS Change Per Inner Iteration	*	SM ³ /M ³	
Max. Time Step * day Min. Time Step * day Rock Compaction Transmissibility Treatment EXPLICIT • Number of Parallel Threads 2 -		Well-bore Volume	*	m³	
Min. Time Step * day Rock Compaction Transmissibility Treatment EXPLICIT - Number of Parallel Threads 2 -		Max. Time Step	*	day	
Rock Compaction Transmissibility Treatment EXPLICIT Number of Parallel Threads 2		Min. Time Step	*	dav	
Number of Parallel Threads 2		Rock Compaction Transmissibility Treatment	EXPLICIT		
		Number of Parallel Threads	2	-	
		-			

Figure 173- Data of TUNING

The MULTREGT can be used to set a transmissibility multiplier between regions. The regions must previously have been defined in the GRID properties section. Following four inputs are necessary to define a MULTREGT keyword (Figure 174):

- From Region Number
- To Region Number
- Transmissibility multiplier for all transmissibilities connecting regions I and J
- Direction(s) in which to apply the multiplier

💐 Reservoir Recurrent Manager						
Reservoir Recurrent Manager						B
Defined Dates: 2005/02/01	Reservoir Recurrent Data Para	ameters:				
	Name	Value		Unit		
+	From Region Number			-	-	
Reservoir Recurrents	To Region Number			-		
DPSDT	Transmissibility Multiplier	1.0		-		
MULTELT	Application Direction	XYZ	Ŧ	-		
	Application Flag	ALL	-	-		
2005/02/01	Region Choice	MULTNUM	-	-		
MULTREGT						
2005/02/01						
Metric (ECLIPSE™) ▼ 0.00						Cancel OK

Figure 174- Data of MULTREGT

3-3-8-Drilling Management

The "Drilling Management" is used to manage auto drilling operation. Following recurrents are available to define drilling which has been displayed in Figure 175:

- QUEUE
- DRILPRI
- WELSOMIN
- PRORDER
- WDRILTIM
- WORKLIM

There is a filtering facility in this window which user can use it to filter recurrents either by type or by date.

For defining QUEUE, the Queue type which can be one of the sequential or priority options, must be selected. The arrows are used to move selected wells to queue or vice versa.

Note: the priority value is not defined for sequential queue type.

C Drilling Management	_ _ X
Drilling Management	
Add QUEUE Add DRILPRI Add WELSOMIN Add PRORDER Add WORKLIM Add WORKLIM	
Metric (ECLIPSE ^M) V 0.00	el OK

Figure 175- Drilling Management

Drilling Manag	gement										
Drilling Manag	gement										
+		By: Date 🔻	Qu	eue T	уре:	SEQUENTIAL 🔻					
Defined Dates	2005/02/01				Well Name	Priority Value		4		Well Name	
Defined Dates.	2005/02/01			1	I02	N/A		_	1	I01	
Date	Туре			2	P01	N/A	ļ	4	2	103	
▲ 2005/02/01				3	P05	N/A		\triangleright	3	104	
	QUEUE		노				ľ		4	P02	
	DRILPRI			<u> </u>				Ŵ	5	P03	
	WELSOMIN				-		_		2	P04	
	PRORDER								6	P04	
	WORLINA								7	P06	
	WORKLIN										
				-							
				<u> </u>	-		_				
					-		_				
Metric (ECLIPSE	E™) ▼ 0.00									Cancel	ОК

Figure 176- Moving well to Drilling Queue

The DRILPRI is used to set the coefficients that define the default priority formula for the prioritized drilling queue. It must be used if any wells are placed in this queue with the WDRILPRI keyword without a fixed priority set in WDRILPRI.

The minimum oil saturation in a grid block necessary to allow a well connection to be opened automatically is entered in WELSOMIN.

The PRORDER keyword can optionally be used to define a specific sequence of actions to be performed if a group fails to meet its production rate target.

The WDRILTIM controls the automatic drilling of new wells. The well name and time taken to drill the well are two inputs of this recurrent.

The time taken for each automatic workover is defined in WORKLIM keyword.

3-3-9-Rig Management

The Rig Management window which is displayed in Figure 177 and 178 includes two tabs of "Drilling Rig Assignments" and "Workover Rig Assignment". The + and – buttons are used to add or remove rig assignment for both tabs. The number of rigs must be specified before adding any rig assignment.

💐 Rig Management						
Rig Management						A
Drilling Rig Assignments	Workover Rig Assignme	ents				
Number of Rigs:	1 Apply	Selected Drilli	ng Rig Assignment Param	eters:		
+ -		Name	Value		Unit	
Defined Dates 2005/02/	01 -	Group	FIELD	-	-	
Defined Dates: 2003/02/	•	Drilling Rig	Drilling Rig 1	-	-	
Assignments By Date		Action	ADD	Ŧ	-	
▲ 2005/02/01						
Assignment-1						
Assignment-2						
Metric (ECLIPSE™) ▼	0.00					Cancel OK

Figure 177-Drilling Rig Assignment

💐 Rig Manageme	ent								• X
Rig Manageme	nt								
Drilling Rig Assig	gnments	Workove	Rig Assignm	ents					
Number of Rigs		1	Apply	Selected Workov	ver Rig Assignment Parameters:				
+ -				Name	Value		Unit		
D.C. 1D.	2005 (02)	01		Group	FIELD	Ŧ	-		
Defined Dates:	2005/02/	01	•	Workover Rig	Workover Rig 1	Ŧ	-		
Assignments B	y Date			Action	PREVENT_SUBORDINATE_WELLS_	Ŧ	-		
▲ 2005/02/01									
Assignr	nent-1								
Metric (ECLIPSE	™) ▼	0.00						Cancel	ОК

Figure 178- Workover Rig Assignment

3-4- Using Numerical Data Tab

3-4-1-Numerical Parameters

Clicking on "Numerical Parametes" button, the window of Figure 179 is opened. In this window the numerical parameters of solver options such as solution method, system phase, allowable errors for some parameters, bubble point and saturation switch triggers, preconditioner type, minimum and maximum pressure, using well inner iteration, and cascade analysis are entered. In this window user can enter Crank-Nicolson Multiplier also.

Numerical Parameters Numerical Parameters		Σ
Solver Options:		
Name	Value	Unit
Solution Method	Fully Implicit Mode	v -
System Phase	Oil, Water, Gas and Dissolved Gas	
Allowable Absolute Pressure Error	10.0	-
Allowable Relative Pressure Error	1.0E-06	-
Allowable Absolute Saturation Error	0.0001	-
Allowable Relative Saturation Error	0.001	-
Bubble-Point Switch Trigger	0.0001	Bar
Saturation Switch Trigger	1.0E-08	-
Preconditioner Type	ILU0	
Minimum Pressure	1.0E-05	Bar
Maximum Pressure	1.0E+15	Bar
Crank-Nicolson Multiplier	1.0	-
Use Well Inner Iteration		-
Metric (ECLIPSE™) 0.00	Cancel	ОК

Figure 179- Numerical Parameters window

3-4-2-Output Data

The "output data" button, will lead user to the output data window (Figure 180). In this window the desired parameters for each block, region, groups, wells, connections and reservoir are selected for displaying next to the simulating. User can see run 3D animation just if select some data of the "3D Visualization Variables".

The summary vectors can be selected using "Summary Variables" tab of Figure 181. There is also a summary importer in "Output Data" window.

d Visualization Variables	Summary Variables Output Frequency		
Grid Variables:	[]		
Grid Property Name	Grid Property description	Grid Property Unit Type	
BPR	Oil Pressure	Pressure	
BWPR	Water Pressure	Pressure	=
BGPR	Gas Pressure	Pressure	
BOSAT	Oil Saturation	Saturation	
BWSAT	Water Saturaion	Saturation	
BGSAT	Gas Saturaion	Saturation	
BBO_RETINA	Oil Formation Volume Factor	Fvf Liquid	
BBW_RETINA	Water Formation Volume Factor	Fvf Liquid	
BBG_RETINA	Gas Formation Volume Factor	Fvf Gas	
BVOIL	Oil Viscosity	Dynamic Viscosity	
BVWAT	Water Viscosity	Dynamic Viscosity	-

Figure 180- Output Data Window

🍭 Output Data Cont	iguration									
Output Data Conf	iguration									*
3d Visualization Var	ables Summary Va	ariables (Output Fre	quency						
Field Group	Region B	Block	Well	Connectio	n Aquifer	Numerical Aquifer	Simulation			
Field Variables:										
Variable Name	Variable Descript	tion		Var	iable Unit type					<u>^</u>
FAPI	Field Oil API			No	Unit					=
FGE	Field Gas Efficier	ncy		No	Unit					
FGIP	Field Gas In Plac	e		Vol	ume Gas					
FGIR	Field Gas Injection	on Rate		Flo	w Gas					
FGIT	Field Gas Injection	on Total		Vol	ume Gas					
FGOR	Field Gas Oil Rat	tio		Gas	Liquid Ratio					
FGPR	Field Gas Produc	ction Rate		Flo	w Gas					
FGPT	Field Gas Produc	ction Tota	il	Vol	ume Gas					
FGSAT	Field Gas Saturat	tion		No	Unit					-
Metric (ECLIPSE™)	• 0.00				Impor	ECLIPSE Summary	elect All	Unselect	All Invert	Selections

Figure 181- Summary Variables Tab

User can choose one or more time for having Restart Point in the output frequency tab, which could be performed after selecting desired time (Date) by clicking on the row and specifying plot dates (Figure 182). The values of Plot Counts can be edited by user one by

one (this specifies the count of the outputs in the desired interval). Also there is a capability of multiple Plot count using "Constant Plot Interval" selection in this window.

Output Data Configura	ation						
utput Data Configur	ation						
3d Visualization Variable	s Summary Va	ariables Outpu	it Frequency				
Plot Counts:							
Relative Time (day)	Start Date	End Date	Length (day)	Plot Count	Restart		
0.0	2005/02/01	2006/02/01	365.0	1	No		
365.0	2006/02/01	2007/02/01	365.0	1	No		
730.0	2007/02/01	2008/02/01	365.0	1	No		
1095.0	2008/02/01	2009/02/01	366.0	1	No		
Restart Options				Plo	t Options		
Has Restart?	h steps: 1		Арр		Set Selecte	interval:	day Specify Plot Dates
Metric (ECLIPSE™) ▼	0.00			Import	ECLIPSE Sun	nmary Cancel	ОК

Figure 182- Output Frequency Tab

The "Specify Plot Count" button will display the Figure 183, in which the selected dates are shown. For adding new dates, use "Add Plot Dates" button.

🍭 Output Dat	e Scheduler					
Output Date	Scheduler					
Simulation Sc	hedule Bounds	:				
Bound	Date Time	Relative Time	(day)			
Step Start	2007/02/01	730.0				
Step End	2008/02/01	1095.0				
Step Result O	utputs:					
Plot Date	Time w.r.t.	Step Start (day)	Time w.r.	t. Simulatio	n Start (day)	
2008/02/01	3	365.0		1095.0		
						Remove All
Times Interva	ls:		0.0		day	Add Plot Dates
Number of Di	visions:		0			Add Plot Dates
Thursday , I	February 01, 20	007				Add Plot Dates
Time after sta	rt date: 0	day			•	
Metric (Eclip	se) 🔻 0.00]			Cancel	ОК

Figure 183- Specify Plot Count, Output Data Manager

4- How to Use 3D Toolbar

4-1- MTRX, FRAC, Dual

If the model is fractured, then three view options of matrix (M), fracture (F) and dual (M/F) are activated. Clicking on each of them will lead user to desired view.

Figure 184- MATRIX, FRACTURE, and DUAL view

The name of active view is written in top left side of the 3D view. There is also a green border indicating active view. Figure 185 displays DUAL view for a sample mode.

Figure 185- DUAL view fora Sample Model

The \bigotimes button is used for synchronizing both Matrix and fracture views. In synchronized mode (\bigotimes), the model properties and 3D zooming, rotating and etc. for active view is applied for inactive one, immediately. Note that inactive view can be rotated, zoomed and etc. independently. Figure 186 shows a rotation of active fracture view.

Figure 186- Synchronized Dual View

4-2- Displaying Options

The button of $\overset{\circ}{\bullet}$ is used for resetting the 3D view to its default size and direction. The render option O includes three options of render point, render wireframe, and render solid, which are shown in Figure 166. using render points option, the model is displayed by 8 points for each grid block (corner points of each grid block); whereas, the render wireframe option, is used to view each grid block by 12 lines (coordination lines); Finally if user wants to view the solid grid blocks, the render solid option must be selected; Figure 188 is shown above descriptions.

RETINA Simulation™ 1 : PSAMPLE		
File Project Setting Validation Simulation Tools Options	Help	
🕞 🕞 📾 💥 🛗 🔛 🕒 Preproces	Perspective Simulation Perspective	
B Model Tree 3D Properties Well Path	M = 🕅 🔍	
	Matrix (Active)	oints
ACTNUM	Render V	Nireframe
	Render S	solid
PERMX	-1 X-Axis 2413.0	121.9 1453.3 Y-Axis
PERMY PERMZ		
PORO		
ROCKNUM SATNUM		
Time Player Grid Filters Enhanced Probe		
Step: 1, Date: 2005/02/01		
ਕ Start End		
Time: 0.0 a day		
Project (name = PSAMPLE) was opened		Lock State: OK 6 0.00 Metric (ECLIPSE™) → ⑦

Figure 187- Render Options

The camera mode option includes two options of perspective and Orthographic. The perspective is default option. Both of the displaying options are shown in the Figure 189.

Figure 188- A) Render Pint, B) Render Wireframe, C) Render Solid

Figure 189- A) Perspective, B) Orthographic

User can use Figure 190 options to change view in desired directions of x, y or z axis. There are two portions for each axis which are either in positive or negative directions. In fact, this is a 2D view option.

Sometimes and especially in thin reservoirs, detecting layers in the Z direction is hard. So user can increase or decrease the Z-Scale of the model using "Z-Scale Action" options. There are 10 scale factors of 0.1 to 100 for scaling Z ($\mathcal{Z}_{\ast}^{\ddagger}$)

Four buttons are available for show/hide some components of the model:

- Show or hide inactive cells
- Show or hide model grids
- Show or hide model wells
- Show or hide aquifers

All of the above buttons except inactive cells option are in show mode when the model loaded. For changing status to the hide, just click on the related button. For example Figure 191 shows the model in two status of: A) Show wells and Hide Inactive Cells and B) Hide Wells and Show Inactive Cells.

Figure 191- A) Show wells and Hide Inactive Cells, B) Hide Wells and Show Inactive Cells

4-3- 3D View Setting and Save

3D View setting is available using which which include items and their information. There are two buttons of "Close" and "Reset" in the bottom of the setting window, close will implement changes and reset will cancel any changes you made in setting. You can save a screen shot of the 3D view in .png format using the button.

/iew Settings				~	~
D View Settings				{(56
Background	Name	Value	Unit		_
Axes Box	Fill Type	Gradient	-		
Grid Shape	Direction	Vertical			
Vertex	Eirst Color	(0.0.0)			
Edge	Second Color	(100 100 100)	-		
Face	Second Color	(120 120 128)	-		
Element					
Well					
Aquifer					
Antialiase					
Render Options					
Perspective Options					
Orthographic Options					
Display Mode					
Polygon Mode					
⊿ Lighting					
Light 1					
Legend					
Animation					
Info Text		1	1 1		
				Rese	et
	_				_
Metric (ECLIPSE™) ▼				Reset All Close	

Figure 192- 3D View Setting

4-3-1-Background Settings

The background settings includes following items:

Fill Type: it can be chosen either Solid or Gradient. There is no color gradient in the solid one.

Direction: the direction of the color gradient will be either horizontal or vertical.

Fist Color: user can choose first color of the background from Figure 193.

Second Color: it is the second color of the background which can be select from Figure 193.

Note that, in the gradient fill type of the background, the gradient lies between first and second colors (Figure 194).

Figure 193- Background Colors

Page 227

4-3-2-Axes Box Settings

In this part of the setting window, the visibility, scale, line width, colors and precision will be defined by user. If you want remove axes from 3D view, just change the "false" to "True" in the value column.

iew Settings				
View Settings				£C.
Background	Name	Value	Unit	
Axes Box	Enable	true	-	
	Tick Number X	5	-	
Vertex	Tick Number V	5		
Edge	Tick Number 7	3		
Face	Primary Line Width	10		
Element	Secondary Line Width	1.0		
Well	Brimany Color	(255 255 255)	-	
Aquifer	Primary Color	(255 255 255)	-	
Antialiase	Secondary Color	(200 200 200)	-	
Render Options	Formatting Flag	Floating Point Notation	-	
Perspective Options	Percision	1	-	
Orthographic Options	_			
Display Mode	_			
Polygon Mode	_			
Lighting	_			
Light 1	_			
Legend	_			
Animation	_			
Info Text		-		Reset
Metric (ECLIPSE™) ▼			Reset All	Close

Figure 195- Axes Box Settings

4-3-3-Mesh Shape Settings

User can use this window for the color and size settings in the following statuses:

- *Vertex*: available for "Render Point" option.
- *Edge*: available for "Render Wireframe" option
- Face: available for "Render Solid"
- *Element*: available for "Render Solid"

4-3-4-Well Settings

In this part of the setting window, the visibility, well radius, Injection and production default color, injection and production selection color, well name text color and offset can be defined by user. The wells are visible while the "Value" column is true. For example Figure 197 shows the model, in which the colors of the injection and production wells are white and blue, respectively. The well names text color is yellow and the radius of the wells defined to be twice of default value.

D View Settings				
3D View Settings				Ś
Background	Name	Value	Unit	
Axes Box	Visible	true	-	
⊿ Grid Shape	Radius	5.0	-	
Vertex	Injection Default Color	(220 50 50)		
Edge	Injection Selection Color	(255 255 0)		
Face	Production Default Color	(50 50 220)		
Element	Production Selection Color	(255 255 0)		
Well	Open Completion Color	(0.255.0)	-	
Aquifer	Shut Completion Color	(0 233 0)	-	
Antialiase	Shut Completion Color	(255 0 0)	-	
Render Options	Well Name Text Color	(255 255 0)	-	
Perspective Options	Well Name Text Offset	10	-	
Orthographic Options	_			
Display Mode	_			
Polygon Mode	_			
▲ Lighting	_			
Light 1	_			
Legend	_			
Animation	_			
Info Text	_			Reset
Metric (ECLIPSE™) ▼			R	eset All Close

Figure 196- Well Settings

Figure 197- Well Visual Settings

4-3-5-Aquifer Settings

The Aquifer settings are displayed in the Figure 198. The visibility, default and selected colors and aquifer size should be defined here.

View Settings				{
Background	Name	Value	Unit	
Axes Box	Visible	true	-	
Grid Shape	Default Color	(153 204 255)		
Vertex	Selected Color	(255 105 20)		
Edge	A suifes Thislanses	(255 195 50)		
Face	Aquiter Thickness	5.0	-	
Element				
Well				
Aquifer				
Antialiase				
Render Options				
Perspective Options				
Orthographic Options				
Display Mode				
Polygon Mode				
Lighting				
Light 1				
Legend				
Animation				
Info Text				
	_			Reset

Figure 198- Aquifer Settings

4-3-6-Antialiasing Settings

The point and line smoothing setting is done here. There are three options for line and point smoothing:

- *Nicest*: the quality of point and lines are in the highest level
- *Fastest:* the quality of point and lines are in the intermediate level
- *Don't Care*: the quality of point and lines are in the lowest level

4-3-7-Rendering Settings

There are four types of settings in this section:

- *Camera Mode*: it will be either perspective or orthographic
- *Scale*: there are three numbers in "Value" column, which are scale multipliers in x, y, z directions. For example if the first number changes to 2, the length of model in the x direction will be multiply in 2. The Scale with (3, 2, 10) is shown with the original view of the model in the Figure 200.

3D View Settings				
3D View Settings				
Background	Name	Value	Unit	
Axes Box	Camera Mode	Perspective	-	
⊿ Grid Shape	Scale	101010		
Vertex	Zoom Sten	1		
Edge	Dan Sten	1	-	
Face	Pan Step	1	-	
Element				
Well				
Aquifer				
Antialiase				
Render Options				
Perspective Options				
Orthographic Options				
Display Mode				
Polygon Mode				
⊿ Lighting				
Light 1				
Legend				
Animation				
Info Text				
				Reset
Metric (ECLIPSE™) ▼				Reset All Close

Figure 199- Rendering Settings

Figure 200- A) Original Scale, B) Scaled to (3, 2, 10)

Perspective Settings:

Following items which are displayed in Figure 201 should be defined by user:

- Fovy: y direction angel
- *Aspect*: the ratio of width to height in each projection
- *Z Near Perspective*: distance of the watcher from near plane
- Z Far Perspective: distance of the watcher from far plane

Figure 201- Perspective Parameters

Orthographic Settings:

Following items which are displayed in Figure 202 should be defined by user:

- Screen Width
- Screen Height
- Z Near Orthographic

• Z Far Orthographic

Figure 202- Orthographic Parameters

4-3-8-Display Mode Settings

The type and transparency Ratio of the blocks are defined here. Only when the type is "Transparent" the transparency ratio will have effect.

4-3-9-Polygon Mode Settings

It lets user to choose the wireframe, point or solid modes.

4-3-10- Lighting Settings

The lighting settings window is shown in Figure 203. Initially the lighting is active by default. If user wants to inactive this option, should change "true" to "false" in the "Value" column.

View Settings					Ę
Pashanana	1				5
Aves Per	Name	Value	Unit		
Axes box Grid Shana	Enable	true	-		
Vortex	Background Light	(51 51 51)	-		
Edge	Background Light Alpha	1.0	-		
Eage					
Face	-				
Wall	-				
Aquifer					
Aquirci Antialiase					
Render Ontions					
Perspective Options					
Orthographic Options					
Display Mode					
Polygon Mode					
Lighting					
Light 1					
Legend					
Animation					
Info Text					
					Reset
Aetric (ECLIPSE™) ▼			(Reset All	Close

Figure 203-Lightning Settings

4-3-11- Property Settings

Following settings are available here:

- *Type*: the coloring type can be either continuous color or block color.
- *Level Number*: the number of the colors is defined here.
- *Grid Enable*: it is initially active, if user try to inactivate this option, the grids won't be shown any more.
- *Color Map*: there are four color maps in this setting dialog as: Extended rainbow, Gray Scale, Rainbow and two colors.

Legend:

Legend setting includes show/hide, coloring and its type, header font and size, numbers font and size, legend background settings and font colors. The Figure of 204 displays the legend for porosity in a typical model.

Figure 204- Legend View

4-3-12- Animation and Info Text Settings

The time settings of animating, font and color of the info text (displayed in the bottom of the windows) are available here.

4-4- Mouse Buttons Action and Keyboard Shortcuts

4-4-1-Rotation

Right button of the mouse can be used to rotate desired object in the 3D view. You should hold this button down and try to rotate the object. The rotation will performed around the normal vector of the plate.

4-4-2-Movement

Ø

Middle button of the mouse or "Ctrl+left button" of the mouse, can be used to move desired object in the 3D view. You should hold this buttons down and try to move the object. The movement will performed in the direction which mouse is moved.

4-4-3-Zooming in and out

The wheel of the mouse is used to zoom in or zoom out. In addition to this the "Ctrl+middle button" of mouse will be used to zoom in or zoom out the model.

4-5- Keyboard Shortcuts

There are two types of shortcuts:

- Menu shortcuts (Figure 205)
- General shortcuts (Figure 206)

	Binding
New Project	Ctrl + N
Open Project	Ctrl + O
Open Eclipse Data File	Ctrl + E
Save Project	Ctrl + S
Save As Project	Ctrl + D
Close Project	Ctrl + W
Project Information	Ctrl + I
Open Eclipse Import Messages	Ctrl + M
Full Project Validation	Ctrl + F
Start Simulation	Ctrl + R
Simulation Configuration	Ctrl + G
Open Plot Result Viewer	Ctrl + T
Open History Schedule Builder	Ctrl + B
Help	Ctrl + H
Technical Document	Ctrl + J

Figure 205- Menu Shortcuts

	Binding	Rotate Up View 3 D Model	Ctrl + Shift + U
Increase Z Scale	Ctrl + =	Rotate Down View 3 D Model	Ctrl + Shift + J
Decrease Z Scale	Ctrl + -	Zoom View 3 D Model In	Ctrl + Shift + =
Reset View	Ctrl + Shift + R	Zoom View 3 D Model Out	Ctrl + Shift + -
Matrix View	Ctrl + Shift + M	Pan Right View 3 D Model	Ctrl + Shift + Right
Fracture View	Ctrl + Shift + F	Pan Left View 3 D Model	Ctrl + Shift + Left
Dual View	Ctrl + Shift + D	Pan Up View 3 D Model	Ctrl + Shift + Up
X Negative	Ctrl + Shift + X	Pan Down View 3 D Model	Ctrl + Shift + Down
Y Negative	Ctrl + Shift + Y	X Positive	Ctrl + Alt + X
Z Negative	Ctrl + Shift + Z	Y Positive	Ctrl + Alt + Y
Show Hide Left Panel	Ctrl + Shift + P	Z Positive	Ctrl + Alt + Z
Show Hide Inactive Cell	Ctrl + Shift + C	Z Positive	Ctrl + Alt + Z
Show Hide Grid	Ctrl + Shift + G	Model Tree	Ctrl + Alt + M
Show Hide Wells	Ctrl + Shift + W	View 3 D Properties	Ctrl + Alt + 3
Show Hide Aquifers	Ctrl + Shift + A	Time Player	Ctrl + Alt + T
View 3 D Setting	Ctrl + Shift + S	Grid Filters	Ctrl + Alt + F
In Sync	Ctrl + Shift + I	Enhanced Probe	Ctrl + Alt + P
Rotate Right View 3 D Model	Ctrl + Shift + K	Geometry And Grid Data	Ctrl + Alt + G
Rotate Left View 3 D Model	Ctrl + Shift + H	Reservoir Data	Ctrl + Alt + R
Numerical Data	Ctrl + Alt + N	Schedule Data	Ctrl + Alt + S

Figure 206- General Shortcuts

5- Program Standard Toolbar

This toolbar consists of the following buttons:

- File
- Project Setting
- Validation
- Simulation
- Tools
- Options
- Help

5-1- File

The file button includes following options:

Create a New Project

Open a RETINA Saved Project

- Open an Eclipse Data File
- 💥 🛛 Close Project
- Save Current Project
 - Save Project as a New One
 - Exit

The first three items (\bigcirc , \bigcirc , \boxdot), were described in previous sections (<u>section 1</u>).

The Button of \bigotimes is used to close the project. The \bigotimes button is used to save the project to the current file, the \bigotimes button is also used to save project as new one, note that all of the RETINA projects are saved as a *.retina files.

5-2- Project Setting

The "Project Setting" includes following two components:

- Project Information
- Open Eclipse Import Messages

User can enter project name, validator engineer name, supervisor, reservoir and engineer names in "Project Information" window (Figure 207). The Grid Type and project start date field are not editable.

Project Information	
Project Information	i
Project Name:	PSAMPLE
Validator Engineer Name:	Default Validator
Supervisor Name:	Default Supervisor
Reservoir Name:	Default Reservoir
Engineer Name:	Default Engineer
Save Imported Results	
Start Date:	2005/02/01
Grid Type:	Single
	Cancel OK

Figure 207- Project Information

Open Eclipse import message, displays all messages of error, warning and info levels (Figure 208).

Figure 208 - Local Coordinate System

5-3- Validation

There are 9 validation options in the RETINA Validation button:

- Full Project Validation Grid Validation
 - **Function Validation**
 - Initialization Validation
 - **End-Point Scaling Validation**
- **Aquifers Validation**
 - Scheduling Validation
 - Numerical Validation
 - **Output Validation**

Each validation option validates just a specific portion of the RETINA, except first one. The first option is used to validate full project. For observing the validation messages, go to the "Validation Messages" tab of "Model Tree" tab which exists in Left Panel.

5-4- Simulation

There are two options for simulating:

- Start Simulation
- Simulation Configuration

After defining all reservoir and model properties, you can start to simulate the model using "Start Simulation Button". Choosing this button will lead user to the window of Figure 209. There are six buttons of "Start", "Stop", "Restart", "Pause", "Live Results" and "Cancel" in the simulation window. Initially only three of them are active (Start, Restart and Cancel). Clicking on start button simulation will start (Figure 210). If you have restart file, you can restart the simulation using restart button. You can unlock the window using to see desired part of simulation log during run. An estimation of remain time is displayed during run, in this window. User can filter the messages which want to see during run using Message level list.

There are 8 choices for user in this list:

- Off
- Fatal
- Error
- Warn
- Info
- Debug
- Trace
- All

The number of displayed messages is increased from Off to All.

nulation:: PSAMPLE	
Message Level: Info 🔹 Estimated Remaining Time: -	
Metric (ECLIPSE™) ▼ 0.00 Close Start Restart Stop Terminate Pause Live Res	llts

Figure 209- Simulation Window

During simulating, at first, inactive buttons are activated, using "Stop" button will stop simulation and reset to initial state. The "Pause" button pause the simulation. In this case if you start the simulation again the simulation will continue from paused time.

Simulation:: PSAM	PLE					X
imulation:: PSAM	PLE					
Message Lev	el: Info 🔻 Es	timated Remaining Time:	1:00 mins	secs		
4	11.5	2005/02/12	4	Residual	6.75	
Constraint of	well I01 was cl	nanged from Wate	er rate	to Bottom hole	pressure.	
5	21.625	2005/02/22	4	Residual	10.125	
6	36.8125	2005/03/09	4	SLN Change	15.1875	
7	59.5938	2005/04/01	4	SLN Change	22.7813	
8	93.7656	2005/05/05	4	SLN Change	34.1719	
9	145.023	2005/06/26	4	SLN Change	51.2578	
10	221.91	2005/09/10	6	Residual	76.8867	
11	298.797	2005/11/26	6	SLN Change	76.8867	
12	365.0	2006/02/01	4	SLN Change	66.2031	
Simulating Ne	w Schedule					E
Step No.	Time (day)	Date	ITRs	CNV Reason	DT (day)	
13	457,264	2006/05/04	5	SLN Change	92,2641	
14	595.66	2006/09/19	5	SLN Change	138.396	
<						4
Metric (ECLIPSE™)	▼ 0.00 Close	Start	Restart	Stop	Terminate Pause	Live Results

Figure 210-Simulating the Sample Model

The button of "Live Results" is used to display results during simulation, lively. In this window user can define refreshing time of the results from 1s to 10s (Figure 211). All options of plot and axis settings are available for this plot (like RETINA other plots) using right click on plot.

The button is used to configure simulation. The Connector type, result folder name format, validation type and file connector steps can be edited by user in this window (Figure 212).

User can select "Simulation log section" parameters to write their values to the log file in the project path. Note log file and console files are written in the project path and are available for various purposes.

Live Results Uve results Uve results was updated, 56 result files were read

Time: 1 s 1	10 s				_				NO	titie!			
<u> </u>	T (Date) W	OPR (STB/day)	WWPR (STB/day)	WBHP (psi)	<u> </u>								
ary Components	1990/01/21	1500.0	0.913924	1982.5		10						_	
Well Oil Injection Total	1990/01/31	1500.0	0.936519	1858.88		1500.0		•					E 2367 (
Well Water Production Total	1990/02/10	1500.0	0.964478	1717.3		1000.0		1					-
Well Water Injection Total	1990/02/20	1500.0	1.00098	1596.43	E	1400.0 -							
Well Gas Production Total	1990/03/02	1500.0	1.05693	1462.99		1		X					2200.
Well Gas Injection Total	1990/03/12	1500.0	1.13173	1308.15				N					ŀ
Well Gas Oil Ratio	1990/03/22	1500.0	1.21732	1139.77		1200.0 -		\ \					-
Well Bottom Hole Pressure	1990/04/01	1481.51	1.28516	1000.0		11		· · · ·					- 2000
Well Tubing Head Pressure	1990/04/11	1397.58	1.26095	1000.0		4000.0	1						11
Well: PROD11	1990/04/21	1313.45	1.23608	1000.0		1000.0							
Well Oil Production Rate	1990/05/01	1232.45	1.21348	1000.0		1		- X					- 1800
Well Oil Injection Rate	1990/05/11	1157.95	1.19195	1000.0		- 0000		N 1					
Well Water Production Rate	1990/05/21	1089.18	1.17121	1000.0		a 000.0	1		\mathbf{X}				
Well Water Injection Rate	E 1990/05/31	1023.62	1 1511	1000.0		ž]			\sim		1		1 4000
Well Gas Production Rate	1990/06/10	952.007	1 12166	1000.0		2 600 0 -					<u>\</u>		LL 1900
Well Gas Injection Rate	1000/06/20	005 991	1 11 207	1000.0		000.0					N		1
Well Water Cut	1000/06/20	954 70 2	1.00471	1000.0			1			\sim 1			
Well Oil Production Total	1990/00/30	034.702	1.03471	1000.0		400.0 -							- 1400
Well Oil Injection Total	1990/07/10	309.00	1.0/005	1000.0			1					~	ŀ
Well Water Production Total	1990/07/20	/0/.048	1.05925	1000.0									
Well Water Injection Total	1990/07/30	729.493	1.04195	1000.0		200.0 -							- 1200
Well Gas Production Total	1990/08/09	694.163	1.02496	1000.0	-			•					-
Well Gas Injection Total								1					-
Well Gas Oil Ratio	Table Information:				_	0.0744521 -		••••••••			*******	********	- 1000
Well Bottom Hole Pressure		T (Date)	WOPR (STB/day)	WWPR (STB/d	sy)								
Well Tubing Head Pressure	Minimum	1990/01/21	100.0	0.0744521		19	· ·		1				
Well: PROD12	Middle Point	1990/10/18	800.0	0.679807			2	7	70	70	70	7 1	*
Well Oil Production Rate	Maximum	1991/07/15	1500.0	1 28516			×2	190 N	18. 19.	×2.	89.	10 N	₩.
Well Oil Injection Rate	Arithmatic Mean	1990/10/18	600.838	0.862276			02	· 08-	OT	6	02	3	10
Well Water Production Rate	Geometric Mean	1000/09/19	527 270	0.721556			2	2	8	28	5	6	
Well Water Injection Rate	Geometric Mean	1550/06/16	357,579	0.721330	- 1				т	(Date)			
Well Gas Production Rate					- 1					,			
Well Gas Injection Rate					•	Well: PROD11, Varial	le: WOPR 🔷 V	Vell: PROD11, Variab	le: WWPR 🔹 W	ell: PROD11, Varia	ible: WBHP		
Well Water Cut					-							_	
Well Oil Production Total		m			۲ <u>–</u>								

Figure 211- Live Results

💐 Simulation Configuration		
Simulation Configuration		
Result Folder Base Name:	PSAMPLE	Simulation Log Section
		Equilibration Data
Add Simulation Date		Assign Duality
Add Simulation Time		Create Cell Data
		Create Dual Cells
Connector Type:	Jni 👻	Create Equilibration Connections
File Connector Path:	FILES/FileConnector/	Create Geometry
		Create Inactive Cells
File Connector Steps:	0	Create Numerical Data
Validation Type:	Validate each step separately 🔻	Create Output Data
Visible Lon Message Lough		Create Pinch Data
Visible Log Message Level:		Create Static Rock Data
Maximum Number of Backup Files:	100	✓ Initialization
	50140	Load Action Units
Maximum Backup File Size:	SOMB	✓ Load Aquifer Cell Data
Log Line Pattern:	%m%n	V Load Aquifer Data
		Load Cell Data
Maximum Reports per Step:	200	Load Connections
		Load Group Injection Controls
Maximum Extrapolation Reports per Step:	20	
		Select All Deselect All Invert Selection
		Cancel OK

Figure 212- Simulation Configuration

5-5- Tools (Result Viewer)

Open Results Viewer

User can use "Open Result Viewer" for viewing multiple results of RETINA or ECLIPSE. The plot result viewer window is displayed in Figure 213.

🗠 Result Viewer		- • • ×
Vector Results:	+ 2 2 0 回 田 25	Settings:
 Vectors Vectors General Ratios Performance Rates Cumulatives Pressures Volumes Volumes Properties Objects Solutions Regions Wells Blocks Well Completions Inter Region Types Aquifer Types 		Select a chart first to show setting data
Cases: + ₪ ₪ @ **		Sheets: ⊈ ≧ ▼ Ш ▼
Metric (ECLIPSE™) ▼ 0.00	Load	Save Close

Figure 213- Result Viewer

There are five separate sections in the result viewer:

- Vector Results
- Cases
- Setting
- Sheets
- Main View

1) Vector Results:

There are four main parent nodes of: Vectors, Objects, Region Types, and Aquifer Types with red font color in "Vector Results" section. Vector parent node includes the following child nodes:

- General
- Ratios
- Performance
- Rates
- Cumulatives
- Pressures
- Volumes
- Properties

Objects parent node contains following child nodes:

- Field
- Groups
- Aquifers
- Regions
- Wells
- Blocks
- Well Completions
- Inter Region Floes

Aquifer types include the analytical and numerical aquifers and region type includes FIP... regions.

There are "expand all" and "collapse all" buttons in this section which user can use them.

2) Cases:

Three options are available in this section, for importing the requested results using "+" button. The imported case names are editable by clicking on each of them.

- Import RETINA Result file
- Import ECLIPSE Summary File (SMSPEC)
 - This option can be used for all multiple, unified, formatted and formatted ECLIPSE binary result files.

• Import ECLIPSE RSM File

a) Import RETINA Result File:

In case of importing RETINA result file, a dialog is opened in which the result file path must be entered; note that the extension of the retina result file is ".rri", so user must select a desired .rri file for importing to the result viewer. After importing the desired RETINA result file, a RETINA case and blank sheet are added to the result viewer (Figure 214). For the .rri files, a prefix of *RETINA* is added to the result file name in cases section. User can import multiple results and select them. There is a remove icon of "-"in this section; user can remove cases one by one or multiple using this button. The multiple removing options are available using either "Ctrl+right Click" on cases or "Shift+right Click" and then "-";

Figure 214 Result Viewer in Case of Imported RETINA Result File

b) Import ECLIPSE Summary File (SMSPEC):

In case of importing ECLIPSE summary result file (binary result files), a dialog is opened in which the result file path must be entered; in this dialog the unit of the result file must be specified using the related combo box. Note that the

extension of the ECLIPSE binary files is either SMSPEC or FSMSPEC. So user must select a desired ECLIPSE binary result file for importing to the result viewer. After importing the result file, a ECLIPSE case and blank sheet are added to the result viewer. For such result files, a prefix of *SMSPEC* is added to the result file name in cases section. User can import multiple results and select them. There is a remove icon of "-"in this section; user can remove cases one by one or multiple using this button. The multiple removing options are available using either "Ctrl+right Click" on cases or "Shift+right Click" and then "-";

c) Import ECLIPSE RSM File:

In case of importing ECLIPSE RSM file, a dialog is opened in which the result file path, simulation start date and model dimension, must be entered. If result viewer opens from RETINA opened project, the dimension and start date will be get from project data. Check the unit of imported result file and the importing dialog. Note that the extension of the ECLIPSE RSM files .rsm. So user must select a desired file for importing to the result viewer. After importing the result file, an ECLIPSE case and blank sheet are added to the result viewer. For such result files, a prefix of *RSM* is added to the result file name in cases section. User can import multiple results and select them. There is a remove icon of "-"in this section; user can remove cases one by one or multiple using this button. The multiple removing options are available using either "Ctrl+right Click" on cases or "Shift+right Click" and then "-";

थ् Import RSM		
Import RSM		◄
Simulation Start Date:	Tuesday , February 01, 2005	
Grid Nx:	34	-
Grid Ny:	36	-
Grid Nz:	8	
File Path: C:\Users\A. Alizadeh\Deskt	top\New folder	
Metric (ECLIPSE™) ▼	Cancel	ОК

Figure 215 Import RSM File

There are options of select all, unselect all, and invers selection in the cases section. There is a useful facility for comparing results. The comparison buttons

are inactive initially; it will be activated just in case of selecting two cases. You can use comparison windows to compare two selected results (Figure 216). The relative error, minimum and maximum differences and average differences for each point is reported and plotted in comparison window.

and Components													
vesuit components.	Comp	arison Data:						Conn	W=PROD2 CV=	(605):[5,1,2] CGF	R vs. Time		
Connections		RETINA and	ECLIPSE RSI	M Data vs. Time		·		Con	nparison of RETINA	and ECLIPSE RS	MResults		
NJE1		Time	RETINA	ECLIPSE RSM	Relative Difference	1							
▲ PROD2	1	1990/01/01	-0.0	0.0	0.0%	1528.13 -		1		and a state of the			- 2.92
A CV=(605):[5,1,2]	-	1000/01/01	410.005	405 517	1 1 26 4 7 9/	1			1				r i
Connection Gas Production Rate	2	1990/01/11	410.065	405.517	1.12047 %	1400.0			1				
Connection Oil Production Rate	3	1990/01/21	433.856	434.636	0.179388%	1			1	- N			- 25
Connection Water Production Rate	4	1990/01/31	436.692	435.091	0.367946%				1				
V= (1205):[5,1,3]	5	1990/02/10	441.209	440.747	0.10484%	_ 1200.0 -			- /		\		
V=(1805):[5,1,4]	6	1990/02/20	447.084	447.424	0.0761046%	e i			1		N		-
PROD26	-	1000/02/02	440 544	440.997	0.07612599/	14 C			4		N		- 20
⊿ Wells	/	1990/05/02	445.544	445/007	0.070100078	🛎 1000.0 -					\[\] \[\]		2.0
Well: INJE1	8	1990/03/12	462.789	463.1	0.0670927%	2		- All					-
Well: PROD10	9	1990/03/22	472.776	472.978	0.042789%	2					- N		-
Well: PROD11	10	1990/04/01	478.527	478.691	0.0342876%	5 800.0 -			1			<u> </u>	1.15
Well: PROD12	11	1990/04/11	486.065	486.208	0.0293322%	te l						N	1.5
Well: PRODIA	12	1990/04/21	496 304	496.418	0.0229682%	5							-
Well: PROD14	12	1990/04/21	430.304	430,410	0.0223002.76	£ 600.0 -		<i>(</i>					
> Well: PRODIS	13	1990/05/01	208-291	506,697	0.020783976	Sector 1							S 10
> Well: PRODIO	14	1990/05/11	523.869	523.972	0.0197005%	e l			1				F 1.0
> Well: PROD17	15	1990/05/21	541.679	541.782	0.019023%	÷ 400.0		II					-
Well PRODIO	16	1990/05/31	561.219	561.334	0.0204453%	e +00.0		II					
Well: PROD25	17	1990/06/10	582,408	582,533	0.0215259%	5		II	11				
Well: PROD20	10	1000/06/20	606 229	606 264	0.02092029/	00000		II					- 0.5
Well: PROD21	18	1990/00/20	000.230	000.304	0.0200203 /8	- 200.0 -	N N						-
Well: PROD22	10	100n/nk/an	644184	Nec dis	ning/karse	1	11	11	A \				
Well: PROD23	Abs. T	ol. 1.0	E-08		Apply		1	>	4 M				
Well: PROD24		Dutu:				0.0 -							- 0.0
Well: PROD25	Meta	Data:				_							
Well: PROD26			RETINA	ECLIPSE RSM	Relative Difference	-							
Well: PROD3	Mini	mum	-0.00000	0.00000	0.00000%		1 %	1 00	%	%	%	30	\$ 0
Well: PROD4	Mid	dle Point	762.751	764.063	1.46012%		Do.	DO	20	20	Pla	Pa	190
Well: PROD5	Max		1525.50	1528.13	2 92024%		13	120	105	524	57	2	0
> Well: PROD6	IVIAX	and the second	017.402	017.067	0.09770719/				_	_			
Well: PROD7	Arith	imatic Mean	317,402	917.207	0.067707176				Tir	ne (Date)			
Well: PROD8	Geor	metric Mean	0.00000	0.00000	0.00000%		RSM Rel Diff u	т					
Well: PROD9						Course a cours	• No. 011. V						
b Groups													

Figure 216 Comparison Window

3) Settings:

There are five tabs in this section:

- Frame
- Header
- Plot
- Axis
- Legend

Frame Setting: Show or hide actions for the frame of the observable sheet can be set using the "Outer Frame" check box. The color, frame line width, margin, text position, text, and font of the text, are editable in this tab.

<u>Header Setting</u>: Show or hide actions for the each chart header and frame can be set using the "Visible" and "Frame" check boxes, respectively. The position, offset, inner space, color, font, text, and chart description text and font are editable in this tab.

<u>Plot Setting</u>: the content of this setting is only available in case of adding plots in the result viewer. The name of plots (the default format of the plot name in RETINA is [(Case Name) Object-Vector vs. Time/Date]), color, line width, symbol type and size, are configurable in this tab.

<u>Axis Setting</u>: there are two tabs of "General" and "Detail" in the Axis setting; in the general tab user can show/hide the axis frame, change it color, change the align of the axis, and define the minor tick numbers. In the detail tab user can configure the following settings for each axis:

- Name
- Side
- Minimum value
- Maximum value
- Maximum tick number
- Auto step
- Step value
- Inver axis facility

Note: there are multiple Y-axis features in the RETINA result viewer.

<u>Plot Legend Setting</u>: the visibility, position, offset, font size, font type, font color, legend frame show/hide, legend frame color, legend background color, and title are configurable using this tab.

There are three options of "Apply Settings to All" (All means all of the charts), "Reset Setting" and "Reset All Settings are available in "Setting" section.

4) Sheets:

User can define up to 6 charts in a sheet assigning the row and columns in the sheets section. Also user can edit name of each sheet. For example there are 4 charts in sheet1 in the Figure 217. Each chart will activate by clicking on it and displayed in green color.

Nesult Viewer			
Vector Results:	+ 🖸 皆 🕲 🖻 🔠		Settings:
	Sheet1 22 Default Title Symbol Lagend Default Title	Default Title Symbol Legend Default Title	Frame Font: Calibri-8 Color: Image: Color: Image: Color: Frame Visibled Color: Image: Color: Frame Color: Color: Image: Color: Frame Color: Frame Color: Color: Image: Color: Color:
	Symbol Legend	Symbol Legend	_
Metric (ECLIPSE™) ▼ 0.00	τ <u>.</u>		oad Save Close

Figure 217 Defining Multiple Charts in a Sheet

5) Main View:

User can observe the charts and sheets in this view; it contains the following facilities:

- Add new sheet
- Fit diagrams
- Show/hide left panel
- Show/hide setting panel
- Save chart as .png file
- Show table
- Re-layout sheet

If user hides left panel and/or setting panel, the re-layout facility can be used to extend the charts to full view.

5-5-1-How to Use Result Viewer

Follow the following instructions to use the result viewer:

1- Import the result(s) data using import button of the case section

- 2- Set the numbers of chart in sheet (by default 1 chart in displayed in each sheet)
- 3- Check the box of the each case which you want to see the results
- 4- Select desired case(s)
- 5- Select the desired object(s)
- 6- Select desired vector(s)
- 7- Assign a desired X-Axis by right clicking on each vector
- 8- Save the result viewer (.rrf file)
- 9- Load .rrf file if you need

All charts are freely moved by the mouse, zooming in or out and band zoom facility are available.

The Figure 218 displays the results for multiple vectors and multiple objects for one case.

Figure 218 Result Viewer for One Case and One Chart

The Figure 219 displays the results for multiple cases in multiple charts.

RETINA Simulation 1, User Manual

Figure 219 Result Viewer for Multi Cases and Multi Charts

5-6- Options

Validation

Property Template

Input/output Path

The $\overline{\Phi}^{\clubsuit}$ button is used for defining input/output options (Figure 220). User can select one of the following I/O options in this window:

- Last User Path
- Project Path
- Custom Path

IO Options	
IO Options	<u>↓</u>
 Last User Path Project Path Custom Path 	
Custom Path:	Browse
	Cancel

Figure 220- IO Options

User can set validation state (Figure 221) to "off", if he/she does not want to see validations during creating a model, note that if there is validation error in created or loaded model the simulation is prevented from starting regardless to Validation option state.

Validation Options	
Validation Options	
Validation State:	On 🔻
	Cancel OK

Figure 221-Validation Options

The property template () button is used for defining template for each property which is applied to default legend of the 3D view. It contains two tabs of Info and color for each property.

RETINA Simulation 1, User Manual

Prop	erty Template Manager					
	Property Name	<u> </u>	Info Colors			
1	Area		Name	Value	1	Unit
2	Boolean		Unit	mm		-
3	Bulk Volume	E	Value Type	Continuous		-
4	CPU Time Per Day		Contour Type	Continuous	Ŧ	-
5	Capillary Pressure		Distribution Type	Cartesian	Ŧ	-
6	Cell Activity		Decimal Place	3	*	-
7	Cell Center Depth		Formatting Flag	Floating Point Notation	Ŧ	-
8	Cell Height					
9	Cell Top Depth					
LO	Cell Width					
11	Cell X Position					
12	Cell Y Position					
13	Cell Z Position					
14	Chock Diameter					
15	Completion Depth					
16	Completion Diameter					
17	Component Mole Fraction					
18	Concentration					
19	Date					
20	Depth					
21	Dimensionless Pressure					
22	Dimensionless Time					
23	Distance					
24	Dogleg Severity					
25	Drainage Radius					
26	Duration	-				

Figure 222- Property Template Manager Info Tab

	erty Template Manager			<u>(</u>)
	Property Name		Info Colors	
1	Area		Max	
2	Boolean		Max Valuer 0.5	4>
3	Bulk Volume	=		Max
4	CPU Time Per Day			
5	Capillary Pressure		Red: 255 🚔	
6	Cell Activity		Green: 0	0.4 Þ
7	Cell Center Depth		Blue:	
8	Cell Height			
9	Cell Top Depth			
10	Cell Width			
11	Cell X Position		Control Point	0.3 🕨
12	Cell Y Position			· · · · ·
13	Cell Z Position		Red: 0	
14	Chock Diameter		Green:	
15	Completion Depth		Pluer 255	+
16	Completion Diameter		Bide: 255	0.2 🕨 💶
17	Component Mole Fraction			
18	Concentration			
19	Date		Min	
20	Depth		Min Value: 0.0	
21	Dimensionless Pressure			0.1 🕨
22	Dimensionless Time		Red: 255 🛋	
23	Distance			
24	Dogleg Severity		oreen: 0	Min
25	Drainage Radius		Blue: 255 🚔	4
26	Duration	-		

Figure 223 Property Template Manager Colors Tab

RETINA Simulation 1, User Manual

5-7- Help

 \diamond

Help Document

Technical Document

Keyboard Shortcuts